Menu Close

prove-that-n-1-2n-1-2n-1-2-n-2n-1-2-pi-2-4-1-




Question Number 163045 by mnjuly1970 last updated on 03/Jan/22
       prove that    Σ_(n=1) ^∞ (( ( 2n+1 )!!)/((2n )!!)) (1/(2^( n) (2n +1)^( 2) )) =((π(√2))/4)−1
provethatn=1(2n+1)!!(2n)!!12n(2n+1)2=π241
Answered by qaz last updated on 03/Jan/22
Σ_(n=1) ^∞ (((2n+1)!!)/((2n)!!))∙(1/(2^n (2n+1)^2 ))  =Σ_(n=1) ^∞ (((2n+1)!)/((2^n n!)^2 ))∙(1/(2^n (2n+1)^2 ))  =Σ_(n=1) ^∞  (((2n)),(( n)) )(1/2^(3n) )∫_0 ^1 x^(2n) dx  =∫_0 ^1 Σ_(n=1) ^∞  (((−1/2)),((     n)) )(−(1/2)x^2 )^n dx  =∫_0 ^1 ((1−(1/2)x^2 )^(−1/2) −1)dx  =((π(√2))/4)−1
n=1(2n+1)!!(2n)!!12n(2n+1)2=n=1(2n+1)!(2nn!)212n(2n+1)2=n=1(2nn)123n01x2ndx=01n=1(1/2n)(12x2)ndx=01((112x2)1/21)dx=π241

Leave a Reply

Your email address will not be published. Required fields are marked *