Menu Close

prove-that-n-1-H-n-F-n-2-n-ln-4-12-5-ln-Golden-ratio-F-n-fibonacci-numbers-




Question Number 158320 by mnjuly1970 last updated on 02/Nov/21
     prove  that :        Σ_(n=1) ^∞ (( H_( n) . F_n )/2^( n) )  = ln(4) + ((12)/( (√5))) ln( ϕ )       ϕ :   Golden  ratio        F_( n)  : fibonacci numbers
$$ \\ $$$$\:\:\:{prove}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\:{n}} .\:\mathrm{F}_{{n}} }{\mathrm{2}^{\:{n}} }\:\:=\:{ln}\left(\mathrm{4}\right)\:+\:\frac{\mathrm{12}}{\:\sqrt{\mathrm{5}}}\:{ln}\left(\:\varphi\:\right) \\ $$$$\:\:\:\:\:\varphi\::\:\:\:\mathrm{Golden}\:\:\mathrm{ratio} \\ $$$$\:\:\:\:\:\:\mathrm{F}_{\:{n}} \::\:{fibonacci}\:{numbers} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *