Menu Close

prove-that-n-1-H-n-n-2-2-3-with-x-n-1-1-n-x-and-x-gt-1-




Question Number 33892 by math khazana by abdo last updated on 26/Apr/18
prove that  Σ_(n=1) ^∞   (H_n /n^2 ) =2 ξ(3) with  ξ(x) =Σ_(n=1) ^∞  (1/n^x )     and x>1.
$${prove}\:{that}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:=\mathrm{2}\:\xi\left(\mathrm{3}\right)\:{with} \\ $$$$\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\:\:{and}\:{x}>\mathrm{1}. \\ $$
Commented by math khazana by abdo last updated on 26/Apr/18
H_n = Σ_(k=1) ^n  (1/k) .
$${H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *