Question Number 158322 by mnjuly1970 last updated on 02/Nov/21
$$ \\ $$$$\:\:{prove}\:\:{that}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:{tan}^{\:−\mathrm{1}} \:\left(\:\frac{\mathrm{1}}{\mathrm{F}_{\:{n}} }\:\right).{tan}^{\:−\mathrm{1}} \left(\:\frac{\mathrm{1}}{\mathrm{F}_{\:{n}+\mathrm{1}} }\:\right)=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{8}} \\ $$$$\:\:\mathrm{F}{ibonacci}\:{numbers} \\ $$$$ \\ $$