Question Number 90561 by Tony Lin last updated on 24/Apr/20
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
$${let}\:{S}_{{n}} =\prod_{{k}=\mathrm{2}} ^{{n}} \left(\mathrm{1}−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)\:\Rightarrow\:{S}_{{n}} =\prod_{{k}=\mathrm{2}} ^{{n}} \frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$=\prod_{{k}=\mathrm{2}} ^{{n}} \:\frac{{k}−\mathrm{1}}{{k}}×\frac{{k}+\mathrm{1}}{{k}}\:=\prod_{{k}=\mathrm{2}} ^{{n}} \:\frac{{k}−\mathrm{1}}{{k}}×\prod_{{k}=\mathrm{2}} ^{{n}} \:\frac{{k}+\mathrm{1}}{{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}×….\frac{{n}−\mathrm{1}}{{n}}\:×\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}×….×\frac{{n}}{{n}−\mathrm{1}}×\frac{{n}+\mathrm{1}}{{n}} \\ $$$$=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Tony Lin last updated on 25/Apr/20
$${thanks}\:{sir} \\ $$