Menu Close

Prove-that-n-2-n-n-1-is-always-an-integer-for-n-N-




Question Number 34410 by Tinkutara last updated on 05/May/18
Prove that (((n^2 )!)/((n!)^(n+1) )) is always an integer  for n∈N.
$${Prove}\:{that}\:\frac{\left({n}^{\mathrm{2}} \right)!}{\left({n}!\right)^{{n}+\mathrm{1}} }\:{is}\:{always}\:{an}\:{integer} \\ $$$${for}\:{n}\in{N}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *