Menu Close

prove-that-n-360-1-n-number-of-multiple-images-




Question Number 164821 by mathls last updated on 22/Jan/22
prove that  n=((360^° )/∝)−1  n=number of  multiple images
$${prove}\:{that}\:\:{n}=\frac{\mathrm{360}^{°} }{\propto}−\mathrm{1} \\ $$$${n}={number}\:{of}\:\:{multiple}\:{images}\: \\ $$
Commented by mathls last updated on 22/Jan/22
please i have problem and need to your  help.
$${please}\:{i}\:{have}\:{problem}\:{and}\:{need}\:{to}\:{your} \\ $$$${help}. \\ $$
Commented by MJS_new last updated on 22/Jan/22
can you prove that c_0 =Π_(j=1) ^n x_j   if you can′t, why?
$$\mathrm{can}\:\mathrm{you}\:\mathrm{prove}\:\mathrm{that}\:{c}_{\mathrm{0}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\prod}}{x}_{{j}} \\ $$$$\mathrm{if}\:\mathrm{you}\:\mathrm{can}'\mathrm{t},\:\mathrm{why}? \\ $$
Commented by mr W last updated on 23/Jan/22
the forum is not good place for such  general or basic  questions, just like  how to prove E=mc^2 . Google is the  right place to go, as i have suggested.  but i guess you wont follow my  suggestion.
$${the}\:{forum}\:{is}\:{not}\:{good}\:{place}\:{for}\:{such} \\ $$$${general}\:{or}\:{basic}\:\:{questions},\:{just}\:{like} \\ $$$${how}\:{to}\:{prove}\:{E}={mc}^{\mathrm{2}} .\:{Google}\:{is}\:{the} \\ $$$${right}\:{place}\:{to}\:{go},\:{as}\:{i}\:{have}\:{suggested}. \\ $$$${but}\:{i}\:{guess}\:{you}\:{wont}\:{follow}\:{my} \\ $$$${suggestion}. \\ $$
Commented by mathls last updated on 23/Jan/22
there is not the proof above.
$${there}\:{is}\:{not}\:{the}\:{proof}\:{above}. \\ $$
Commented by mr W last updated on 24/Jan/22
i think it depends on what you think  is a proof. i think you can also not  find in google a “proof” for   a(b+c)=ab+ac.    it is easy to understand the number  of multiple images in two adjacent  mirrors with an angle θ between them.  if θ divides 360°, then we can see that  the whole circle (360°) can be divided  into ((360°)/θ) equal parts. each part is the  image of the others. we have thus  totally ((360°)/θ) objects. since one object  is the real object, the others are just  the reflection of the reflection of  the reflection etc. of the real object.  that means the number of images  is ((360°)/θ)−1. i know you wont think   this is a proof.
$${i}\:{think}\:{it}\:{depends}\:{on}\:{what}\:{you}\:{think} \\ $$$${is}\:{a}\:{proof}.\:{i}\:{think}\:{you}\:{can}\:{also}\:{not} \\ $$$${find}\:{in}\:{google}\:{a}\:“{proof}''\:{for}\: \\ $$$${a}\left({b}+{c}\right)={ab}+{ac}. \\ $$$$ \\ $$$${it}\:{is}\:{easy}\:{to}\:{understand}\:{the}\:{number} \\ $$$${of}\:{multiple}\:{images}\:{in}\:{two}\:{adjacent} \\ $$$${mirrors}\:{with}\:{an}\:{angle}\:\theta\:{between}\:{them}. \\ $$$${if}\:\theta\:{divides}\:\mathrm{360}°,\:{then}\:{we}\:{can}\:{see}\:{that} \\ $$$${the}\:{whole}\:{circle}\:\left(\mathrm{360}°\right)\:{can}\:{be}\:{divided} \\ $$$${into}\:\frac{\mathrm{360}°}{\theta}\:{equal}\:{parts}.\:{each}\:{part}\:{is}\:{the} \\ $$$${image}\:{of}\:{the}\:{others}.\:{we}\:{have}\:{thus} \\ $$$${totally}\:\frac{\mathrm{360}°}{\theta}\:{objects}.\:{since}\:{one}\:{object} \\ $$$${is}\:{the}\:{real}\:{object},\:{the}\:{others}\:{are}\:{just} \\ $$$${the}\:{reflection}\:{of}\:{the}\:{reflection}\:{of} \\ $$$${the}\:{reflection}\:{etc}.\:{of}\:{the}\:{real}\:{object}. \\ $$$${that}\:{means}\:{the}\:{number}\:{of}\:{images} \\ $$$${is}\:\frac{\mathrm{360}°}{\theta}−\mathrm{1}.\:{i}\:{know}\:{you}\:{wont}\:{think}\: \\ $$$${this}\:{is}\:{a}\:{proof}. \\ $$
Commented by mr W last updated on 24/Jan/22
Commented by mathls last updated on 24/Jan/22
thanks dear teacher.  prove that v=331+0.6Tc^°
$${thanks}\:{dear}\:{teacher}. \\ $$$${prove}\:{that}\:{v}=\mathrm{331}+\mathrm{0}.\mathrm{6}{Tc}^{°} \: \\ $$
Commented by mr W last updated on 24/Jan/22
please don′t put such questions  without saying what they are about!
$${please}\:{don}'{t}\:{put}\:{such}\:{questions} \\ $$$${without}\:{saying}\:{what}\:{they}\:{are}\:{about}! \\ $$
Commented by mathls last updated on 24/Jan/22
speed of sound in air.
$${speed}\:{of}\:{sound}\:{in}\:{air}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *