Menu Close

Prove-that-n-4-4-n-is-composite-for-all-integer-values-of-n-greater-than-1-




Question Number 21423 by Tinkutara last updated on 23/Sep/17
Prove that n^4  + 4^n  is composite for all  integer values of n greater than 1.
$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{4}} \:+\:\mathrm{4}^{{n}} \:\mathrm{is}\:\mathrm{composite}\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{integer}\:\mathrm{values}\:\mathrm{of}\:{n}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{1}. \\ $$
Answered by dioph last updated on 24/Sep/17
If n is even, both n^4  and 4^n  are even  so 2 ∣ n^4 +4^n .  If n is odd, n = 2m+1 for some m ≥ 1.  Hence:  n^4 +4^n  = (n^2 )^2 +(2^n )^2  = (n^2 +2^n )^2 −2n^2 2^n   = (n^2 +2^n )^2 −2^(n+1) n^2   substituting n = 2m+1:  n^4 +4^n  = (n^2 +2^(2m+1) )−2^(2m+2) n^2  =   = (n^2 +2^(2m+1) )^2 −(2^(m+1) n)^2  =  = (n^2 +2^(2m+1) +2^(m+1) n)(n^2 +2^(2m+1) −2^(m+1) n)  As n^4 +4^n  is positive and the first  factor above is positive, the second  is positive as well. It is easy now  to see that n^2 +2^(2m+1) −2^(m−1) n =  = (n−2^m )^2 +2^(2m)  > 1 ⇒  ⇒ n^4 +4^n  is composite
$$\mathrm{If}\:{n}\:\mathrm{is}\:\mathrm{even},\:\mathrm{both}\:{n}^{\mathrm{4}} \:\mathrm{and}\:\mathrm{4}^{{n}} \:\mathrm{are}\:\mathrm{even} \\ $$$$\mathrm{so}\:\mathrm{2}\:\mid\:{n}^{\mathrm{4}} +\mathrm{4}^{{n}} . \\ $$$$\mathrm{If}\:{n}\:\mathrm{is}\:\mathrm{odd},\:{n}\:=\:\mathrm{2}{m}+\mathrm{1}\:\mathrm{for}\:\mathrm{some}\:{m}\:\geqslant\:\mathrm{1}. \\ $$$$\mathrm{Hence}: \\ $$$${n}^{\mathrm{4}} +\mathrm{4}^{{n}} \:=\:\left({n}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{{n}} \right)^{\mathrm{2}} \:=\:\left({n}^{\mathrm{2}} +\mathrm{2}^{{n}} \right)^{\mathrm{2}} −\mathrm{2}{n}^{\mathrm{2}} \mathrm{2}^{{n}} \\ $$$$=\:\left({n}^{\mathrm{2}} +\mathrm{2}^{{n}} \right)^{\mathrm{2}} −\mathrm{2}^{{n}+\mathrm{1}} {n}^{\mathrm{2}} \\ $$$$\mathrm{substituting}\:{n}\:=\:\mathrm{2}{m}+\mathrm{1}: \\ $$$${n}^{\mathrm{4}} +\mathrm{4}^{{n}} \:=\:\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} \right)−\mathrm{2}^{\mathrm{2}{m}+\mathrm{2}} {n}^{\mathrm{2}} \:=\: \\ $$$$=\:\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} \right)^{\mathrm{2}} −\left(\mathrm{2}^{{m}+\mathrm{1}} {n}\right)^{\mathrm{2}} \:= \\ $$$$=\:\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} +\mathrm{2}^{{m}+\mathrm{1}} {n}\right)\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} −\mathrm{2}^{{m}+\mathrm{1}} {n}\right) \\ $$$$\mathrm{As}\:{n}^{\mathrm{4}} +\mathrm{4}^{{n}} \:\mathrm{is}\:\mathrm{positive}\:\mathrm{and}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{factor}\:\mathrm{above}\:\mathrm{is}\:\mathrm{positive},\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{is}\:\mathrm{positive}\:\mathrm{as}\:\mathrm{well}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{now} \\ $$$$\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} −\mathrm{2}^{{m}−\mathrm{1}} {n}\:= \\ $$$$=\:\left({n}−\mathrm{2}^{{m}} \right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}{m}} \:>\:\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:{n}^{\mathrm{4}} +\mathrm{4}^{{n}} \:\mathrm{is}\:\mathrm{composite} \\ $$
Commented by Tinkutara last updated on 25/Sep/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *