Menu Close

Prove-that-n-gt-n-3-n-




Question Number 13728 by prakash jain last updated on 22/May/17
Prove that  n!>((n/3))^n
Provethatn!>(n3)n
Answered by mrW1 last updated on 23/May/17
Using mathematical induction:  for n=1 we have  1!=1>((1/3))^1 =(1/3) ⇒ true  supposed it′s true for n, i.e.  n!>((n/3))^n   for n+1 we have  (n+1)!=(n+1)n!>(n+1)((n/3))^n   =(((n+1)/3))^(n+1) ((3/(n+1)))((3/(n+1))×(n/3))^n (n+1)  =(((n+1)/3))^(n+1) 3((n/(n+1)))^n >(((n+1)/3))^(n+1)   since 3((n/(n+1)))^n >1  (∗ see proof)  so it′s also true for n+1.  ⇒it′s true for all n.
Usingmathematicalinduction:forn=1wehave1!=1>(13)1=13truesupposeditstrueforn,i.e.n!>(n3)nforn+1wehave(n+1)!=(n+1)n!>(n+1)(n3)n=(n+13)n+1(3n+1)(3n+1×n3)n(n+1)=(n+13)n+13(nn+1)n>(n+13)n+1since3(nn+1)n>1(seeproof)soitsalsotrueforn+1.itstrueforalln.
Commented by prakash jain last updated on 23/May/17
This is great.   Proof for  3((n/(n+1)))^n >1  We can see that ((n/(n+1)))^n >(((n+1)/(n+2)))^(n+1)  and  lim_(n→∞) ((n/(1+n)))^n =(1/e)  (3/e)>1
Thisisgreat.Prooffor3(nn+1)n>1Wecanseethat(nn+1)n>(n+1n+2)n+1andlimn(n1+n)n=1e3e>1
Commented by mrW1 last updated on 23/May/17
That′s good idea!  I wanted to try to prove 3((n/(n+1)))^n >1 also using  mathematical induction.
Thatsgoodidea!Iwantedtotrytoprove3(nn+1)n>1alsousingmathematicalinduction.

Leave a Reply

Your email address will not be published. Required fields are marked *