Menu Close

Prove-that-n-gt-n-3-n-




Question Number 13728 by prakash jain last updated on 22/May/17
Prove that  n!>((n/3))^n
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{n}!>\left(\frac{{n}}{\mathrm{3}}\right)^{{n}} \\ $$
Answered by mrW1 last updated on 23/May/17
Using mathematical induction:  for n=1 we have  1!=1>((1/3))^1 =(1/3) ⇒ true  supposed it′s true for n, i.e.  n!>((n/3))^n   for n+1 we have  (n+1)!=(n+1)n!>(n+1)((n/3))^n   =(((n+1)/3))^(n+1) ((3/(n+1)))((3/(n+1))×(n/3))^n (n+1)  =(((n+1)/3))^(n+1) 3((n/(n+1)))^n >(((n+1)/3))^(n+1)   since 3((n/(n+1)))^n >1  (∗ see proof)  so it′s also true for n+1.  ⇒it′s true for all n.
$${Using}\:{mathematical}\:{induction}: \\ $$$${for}\:{n}=\mathrm{1}\:{we}\:{have} \\ $$$$\mathrm{1}!=\mathrm{1}>\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:{true} \\ $$$${supposed}\:{it}'{s}\:{true}\:{for}\:{n},\:{i}.{e}. \\ $$$$\mathrm{n}!>\left(\frac{{n}}{\mathrm{3}}\right)^{{n}} \\ $$$${for}\:{n}+\mathrm{1}\:{we}\:{have} \\ $$$$\left({n}+\mathrm{1}\right)!=\left({n}+\mathrm{1}\right){n}!>\left({n}+\mathrm{1}\right)\left(\frac{{n}}{\mathrm{3}}\right)^{{n}} \\ $$$$=\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} \left(\frac{\mathrm{3}}{{n}+\mathrm{1}}\right)\left(\frac{\mathrm{3}}{{n}+\mathrm{1}}×\frac{{n}}{\mathrm{3}}\right)^{{n}} \left({n}+\mathrm{1}\right) \\ $$$$=\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} \mathrm{3}\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} >\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} \\ $$$${since}\:\mathrm{3}\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} >\mathrm{1}\:\:\left(\ast\:{see}\:{proof}\right) \\ $$$${so}\:{it}'{s}\:{also}\:{true}\:{for}\:{n}+\mathrm{1}. \\ $$$$\Rightarrow{it}'{s}\:{true}\:{for}\:{all}\:{n}. \\ $$
Commented by prakash jain last updated on 23/May/17
This is great.   Proof for  3((n/(n+1)))^n >1  We can see that ((n/(n+1)))^n >(((n+1)/(n+2)))^(n+1)  and  lim_(n→∞) ((n/(1+n)))^n =(1/e)  (3/e)>1
$$\mathrm{This}\:\mathrm{is}\:\mathrm{great}.\: \\ $$$$\mathrm{Proof}\:\mathrm{for} \\ $$$$\mathrm{3}\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} >\mathrm{1} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that}\:\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} >\left(\frac{{n}+\mathrm{1}}{{n}+\mathrm{2}}\right)^{{n}+\mathrm{1}} \:\mathrm{and} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}}{\mathrm{1}+{n}}\right)^{{n}} =\frac{\mathrm{1}}{{e}} \\ $$$$\frac{\mathrm{3}}{{e}}>\mathrm{1} \\ $$
Commented by mrW1 last updated on 23/May/17
That′s good idea!  I wanted to try to prove 3((n/(n+1)))^n >1 also using  mathematical induction.
$${That}'{s}\:{good}\:{idea}! \\ $$$${I}\:{wanted}\:{to}\:{try}\:{to}\:{prove}\:\mathrm{3}\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} >\mathrm{1}\:{also}\:{using} \\ $$$${mathematical}\:{induction}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *