Menu Close

prove-that-n-N-1-n-1-n-1-1-2-n-1-n-1-2-prove-that-u-n-k-1-n-1-k-k-is-convergente-




Question Number 30217 by abdo imad last updated on 18/Feb/18
prove that  ∀n∈N^★     (1/( (√n))) −(1/( (√(n+1)))) ≥ (1/(2(n+1)(√(n+1))))  2) prove that u_n = Σ_(k=1) ^n   (1/(k(√k))) is convergente .
$${prove}\:{that}\:\:\forall{n}\in{N}^{\bigstar} \:\:\:\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:−\frac{\mathrm{1}}{\:\sqrt{{n}+\mathrm{1}}}\:\geqslant\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)\sqrt{{n}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}\sqrt{{k}}}\:{is}\:{convergente}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *