Menu Close

prove-that-n-x-n-2-x-n-2-x-n-n-2-x-2n-n-2-Ramanujan-s-nested-radikal-




Question Number 154034 by amin96 last updated on 13/Sep/21
prove that   n+x=(√(n^2 +x(√(n^2 +(x+n)(√(n^2 +(x+2n)(√(n^2 …))))))))  Ramanujan′s nested radikal
$${prove}\:{that}\: \\ $$$${n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\sqrt{{n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\sqrt{{n}^{\mathrm{2}} \ldots}}}} \\ $$$${Ramanujan}'{s}\:{nested}\:{radikal} \\ $$
Answered by mr W last updated on 13/Sep/21
(n+x)^2 =n^2 +2xn+x^2   (n+x)^2 =n^2 +x(n+x+n)  ...(i)  ⇒n+x=(√(n^2 +x(n+x+n)))  ...(ii)  in (i) replace x with x+n,  (n+x+n)^2 =n^2 +(x+n)(n+x+2n)  ⇒(n+x+n)=(√(n^2 +(x+n)(n+x+2n)))  put this into (ii),  ⇒n+x=(√(n^2 +x(√(n^2 +(x+n)(n+x+2n)))))   ...(iii)  in (i) replace x with x+2n,  (n+x+2n)^2 =n^2 +(x+2n)(n+x+3n)  ⇒(n+x+2n)=(√(n^2 +(x+2n)(n+x+3n)))  put this into (iii),  ⇒n+x=(√(n^2 +x(√(n^2 +(x+n)(√(n^2 +(x+2n)(n+x+3n)))))))   ...(iv)  and so on so on so on....
$$\left({n}+{x}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\mathrm{2}{xn}+{x}^{\mathrm{2}} \\ $$$$\left({n}+{x}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +{x}\left({n}+{x}+{n}\right)\:\:…\left({i}\right) \\ $$$$\Rightarrow{n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\left({n}+{x}+{n}\right)}\:\:…\left({ii}\right) \\ $$$${in}\:\left({i}\right)\:{replace}\:{x}\:{with}\:{x}+{n}, \\ $$$$\left({n}+{x}+{n}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\left({x}+{n}\right)\left({n}+{x}+\mathrm{2}{n}\right) \\ $$$$\Rightarrow\left({n}+{x}+{n}\right)=\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\left({n}+{x}+\mathrm{2}{n}\right)} \\ $$$${put}\:{this}\:{into}\:\left({ii}\right), \\ $$$$\Rightarrow{n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\left({n}+{x}+\mathrm{2}{n}\right)}}\:\:\:…\left({iii}\right) \\ $$$${in}\:\left({i}\right)\:{replace}\:{x}\:{with}\:{x}+\mathrm{2}{n}, \\ $$$$\left({n}+{x}+\mathrm{2}{n}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\left({n}+{x}+\mathrm{3}{n}\right) \\ $$$$\Rightarrow\left({n}+{x}+\mathrm{2}{n}\right)=\sqrt{{n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\left({n}+{x}+\mathrm{3}{n}\right)} \\ $$$${put}\:{this}\:{into}\:\left({iii}\right), \\ $$$$\Rightarrow{n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\sqrt{{n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\left({n}+{x}+\mathrm{3}{n}\right)}}}\:\:\:…\left({iv}\right) \\ $$$${and}\:{so}\:{on}\:{so}\:{on}\:{so}\:{on}…. \\ $$
Commented by amin96 last updated on 13/Sep/21
good work sir
$${good}\:{work}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *