Question Number 165328 by mnjuly1970 last updated on 30/Jan/22

Answered by Lordose last updated on 30/Jan/22

Answered by mnjuly1970 last updated on 30/Jan/22
![−−− solution−−− 𝛗=^(i.b.p) [((−1)/x) tan^( −1) ( x^( (3/2)) )]_0 ^1 + (3/2) ∫_0 ^( 1) (1/( (√x) .( 1 + x^( 3) ))) dx = −(π/4) + (3/2) Ω where Ω = ∫_0 ^( 1) (( dx)/( (√x) (1 +x^( 3) ))) Ω =^((√x) =t) ∫_0 ^( 1) (( 2)/(1 + x^( 6) )) dx =∫_0 ^( 1) (( x^( 4) +1 − (x^( 4) −1 ))/(1+ x^( 6) )) dx = ∫_0 ^( 1) (( (x^( 4) −x^( 2) +1) + x^( 2) )/(1 + x^( 6) ))dx + ∫_0 ^( 1) ((1−x^( 2) )/(1 −x^( 2) + x^( 4) )) dx = (π/4) + ∫_0 ^( 1) (( 3x^( 2) )/( 1+ (x^( 3) )^( 2) )) dx −∫_0 ^( 1) ((1− x^( −2) )/(( x + x^( −1) )^( 2) −3))dx = (π/4) + (π/( 4 )) + ∫_2 ^( ∞) (( dx)/(x^( 2) −3)) = (π/2) + ∫_2 ^( ∞) (dx/(( x −(√3) )( x +(√3) ))) = (π/2) + (1/(2(√3))) { [ln(((x−(√3))/(x+(√3))) )]_2 ^∞ } = (π/2) + (1/(2(√3))) ln(((2+(√3))/(2−(√3))) ) = (π/2) + (1/(2(√3))) ln (7 +4 (√3) ) ∴ 𝛗 = (π/4) + ((√3)/4) ln ( 7 + 4 (√3) ) ■ m.n](https://www.tinkutara.com/question/Q165341.png)
Answered by Ar Brandon last updated on 30/Jan/22
![𝛗=∫_0 ^1 ((tan^(−1) (x^(3/2) ))/x^2 )dx=−[(1/x)tan^(−1) (x^(3/2) )]_0 ^1 +(3/2)∫_0 ^1 (x^(−(1/2)) /(1+x^3 ))dx =−(π/4)+3∫_0 ^1 (dt/(1+t^6 ))=−(π/4)+3∫_0 ^1 (dt/((t^2 +1)(t^4 −t^2 +1))) =−(π/4)+∫_0 ^1 ((1/(t^2 +1))−((t^2 −2)/(t^4 −t^2 +1)))dt=−(π/4)+(π/4)−∫_0 ^1 ((t^2 −2)/(t^4 −t^2 +1))dt =−(1/2)∫_0 ^1 ((3(t^2 −1)−(t^2 +1))/(t^4 −t^2 +1))dt=(1/2)∫_0 ^1 ((t^2 +1)/(t^4 −t^2 +1))dt−(3/2)∫_0 ^1 ((t^2 −1)/(t^4 −t^2 +1))dt =(1/2)∫_0 ^1 ((1+(1/t^2 ))/((t−(1/t))^2 +1))dt−(3/2)∫_0 ^1 ((1−(1/t^2 ))/((t+(1/t))^2 −3))dt =(1/2)[arctan(((t^2 −1)/t))]_0 ^1 +((√3)/4)[ln∣((t^2 +(√3)t+1)/(t^2 −(√3)t+1))∣]_0 ^1 =(1/2)((π/2))+((√3)/4)ln∣((2+(√3))/(2−(√3)))∣=(π/4)+((√3)/4)ln(2+(√3))^2 =(π/4)+((√3)/4)ln(7+4(√3))](https://www.tinkutara.com/question/Q165346.png)
Commented by mnjuly1970 last updated on 31/Jan/22
