Menu Close

prove-that-Nice-Integral-0-1-tan-1-x-3-2-x-2-dx-pi-3-ln-7-4-3-4-m-n-




Question Number 165328 by mnjuly1970 last updated on 30/Jan/22
       prove that             Nice   Integral         𝛗=∫_0 ^( 1) (( tan^( −1)  (x^( (3/2)) ))/x^( 2) ) dx  =((π + (√3) ln(7 +4(√3) ))/4)             ■  m.n        −−−−−−−−−
provethatNiceIntegral\boldsymbolϕ=01tan1(x32)x2dx=π+3ln(7+43)4◼m.n
Answered by Lordose last updated on 30/Jan/22
Φ = ∫_0 ^( 1) ((tan^(−1) (x^(3/2) ))/x^2 )dx =^(IBP) −((tan^(−1) (x^(3/2) ))/x)∣_0 ^1 +(3/2)∫_0 ^( 1) (x^((1/2)−1) /(1+x^3 ))dx  Φ = −(𝛑/4) + (3/2)∫_0 ^( 1) (1/( (√x)(1+x^3 )))dx  Φ = −(𝛑/4) + 3∫_0 ^( 1) (1/((1+x^6 )))dx  Φ = −(𝛑/4) + 3Σ_(n=1) ^∞ (−1)^(n−1) ∫_0 ^( 1) x^(6n−6) dx  Φ = −(𝛑/4) + 3Σ_(n= 1) ^∞ (((−1)^(n−1) )/(6n−5))  Φ = −(𝛑/4) + 3((𝛑/6) + ((coth^(−1) ((√3)))/( (√3))))  Φ = (𝛑/4) + (√3)coth^(−1) ((√3))
Φ=01tan1(x32)x2dx=\boldsymbolIBPtan1(x32)x01+3201x1211+x3dxΦ=\boldsymbolπ4+32011x(1+x3)dxΦ=\boldsymbolπ4+3011(1+x6)dxΦ=\boldsymbolπ4+3n=1(1)n101x6n6dxΦ=\boldsymbolπ4+3n=1(1)n16n5Φ=\boldsymbolπ4+3(\boldsymbolπ6+coth1(3)3)Φ=\boldsymbolπ4+3coth1(3)
Answered by mnjuly1970 last updated on 30/Jan/22
          −−− solution−−−        𝛗=^(i.b.p)  [((−1)/x) tan^( −1)  ( x^( (3/2)) )]_0 ^1 + (3/2) ∫_0 ^( 1)  (1/( (√x) .( 1 + x^( 3) ))) dx             = −(π/4)  + (3/2) Ω    where  Ω = ∫_0 ^( 1) (( dx)/( (√x) (1 +x^( 3) )))      Ω =^((√x) =t)   ∫_0 ^( 1) (( 2)/(1 + x^( 6) )) dx =∫_0 ^( 1) (( x^( 4) +1 − (x^( 4) −1 ))/(1+ x^( 6) )) dx           = ∫_0 ^( 1) (( (x^( 4) −x^( 2) +1) + x^( 2) )/(1 + x^( 6) ))dx + ∫_0 ^( 1) ((1−x^( 2) )/(1 −x^( 2) + x^( 4) )) dx        =   (π/4) + ∫_0 ^( 1) (( 3x^( 2) )/( 1+ (x^( 3) )^( 2) )) dx −∫_0 ^( 1) ((1− x^( −2) )/(( x + x^( −1) )^( 2) −3))dx       = (π/4)  + (π/(   4  )) + ∫_2 ^( ∞) (( dx)/(x^( 2) −3))        = (π/2)  + ∫_2 ^( ∞)  (dx/(( x −(√3) )( x +(√3) )))        = (π/2)  + (1/(2(√3))) { [ln(((x−(√3))/(x+(√3))) )]_2 ^∞ }          = (π/2) + (1/(2(√3))) ln(((2+(√3))/(2−(√3))) )           = (π/2) + (1/(2(√3))) ln (7 +4 (√3) )         ∴    𝛗 = (π/4) + ((√3)/4) ln ( 7 + 4 (√3) )   ■ m.n
solution\boldsymbolϕ=i.b.p[1xtan1(x32)]01+32011x.(1+x3)dx=π4+32ΩwhereΩ=01dxx(1+x3)Ω=x=t0121+x6dx=01x4+1(x41)1+x6dx=01(x4x2+1)+x21+x6dx+011x21x2+x4dx=π4+013x21+(x3)2dx011x2(x+x1)23dx=π4+π4+2dxx23=π2+2dx(x3)(x+3)=π2+123{[ln(x3x+3)]2}=π2+123ln(2+323)=π2+123ln(7+43)\boldsymbolϕ=π4+34ln(7+43)◼m.n
Answered by Ar Brandon last updated on 30/Jan/22
𝛗=∫_0 ^1 ((tan^(−1) (x^(3/2) ))/x^2 )dx=−[(1/x)tan^(−1) (x^(3/2) )]_0 ^1 +(3/2)∫_0 ^1 (x^(−(1/2)) /(1+x^3 ))dx      =−(π/4)+3∫_0 ^1 (dt/(1+t^6 ))=−(π/4)+3∫_0 ^1 (dt/((t^2 +1)(t^4 −t^2 +1)))      =−(π/4)+∫_0 ^1 ((1/(t^2 +1))−((t^2 −2)/(t^4 −t^2 +1)))dt=−(π/4)+(π/4)−∫_0 ^1 ((t^2 −2)/(t^4 −t^2 +1))dt      =−(1/2)∫_0 ^1 ((3(t^2 −1)−(t^2 +1))/(t^4 −t^2 +1))dt=(1/2)∫_0 ^1 ((t^2 +1)/(t^4 −t^2 +1))dt−(3/2)∫_0 ^1 ((t^2 −1)/(t^4 −t^2 +1))dt      =(1/2)∫_0 ^1 ((1+(1/t^2 ))/((t−(1/t))^2 +1))dt−(3/2)∫_0 ^1 ((1−(1/t^2 ))/((t+(1/t))^2 −3))dt      =(1/2)[arctan(((t^2 −1)/t))]_0 ^1 +((√3)/4)[ln∣((t^2 +(√3)t+1)/(t^2 −(√3)t+1))∣]_0 ^1       =(1/2)((π/2))+((√3)/4)ln∣((2+(√3))/(2−(√3)))∣=(π/4)+((√3)/4)ln(2+(√3))^2       =(π/4)+((√3)/4)ln(7+4(√3))
\boldsymbolϕ=01tan1(x32)x2dx=[1xtan1(x32)]01+3201x121+x3dx=π4+301dt1+t6=π4+301dt(t2+1)(t4t2+1)=π4+01(1t2+1t22t4t2+1)dt=π4+π401t22t4t2+1dt=12013(t21)(t2+1)t4t2+1dt=1201t2+1t4t2+1dt3201t21t4t2+1dt=12011+1t2(t1t)2+1dt320111t2(t+1t)23dt=12[arctan(t21t)]01+34[lnt2+3t+1t23t+1]01=12(π2)+34ln2+323∣=π4+34ln(2+3)2=π4+34ln(7+43)
Commented by mnjuly1970 last updated on 31/Jan/22
thanks alot sir brandon
thanksalotsirbrandon

Leave a Reply

Your email address will not be published. Required fields are marked *