Menu Close

prove-that-o-1-sint-e-t-1-n-o-1-n-2-1-




Question Number 184992 by SANOGO last updated on 15/Jan/23
prove that:  ∫_o ^1 ((sint)/(e^t −1))=Σ_(n=o)  (1/(n^2 +1))
provethat:o1sintet1=n=o1n2+1
Answered by ARUNG_Brandon_MBU last updated on 15/Jan/23
∫_0 ^∞ ((sint)/(e^t −1))dt=∫_0 ^∞ ((e^(−t) sint)/(1−e^(−t) ))dt  =∫_0 ^∞ (e^(−t) sintΣ_(n=0) ^∞ e^(−nt) )dt=Σ_(n=0) ^∞ ∫_0 ^∞ e^(−(n+1)t) sintdt  =Σ_(n=0) ^∞ [(e^(−(n+1)t) /((n+1)^2 +1))(−(n+1)sint−cost)]_0 ^∞   =Σ_(n=0) ^∞ (1/((n+1)^2 +1))=Σ_(n=1) ^∞ (1/(n^2 +1))=(π/2)cothπ−(1/2)
0sintet1dt=0etsint1etdt=0(etsintn=0ent)dt=n=00e(n+1)tsintdt=n=0[e(n+1)t(n+1)2+1((n+1)sintcost)]0=n=01(n+1)2+1=n=11n2+1=π2cothπ12
Commented by SANOGO last updated on 15/Jan/23
merci bien
mercibien

Leave a Reply

Your email address will not be published. Required fields are marked *