Menu Close

Prove-that-p-1-q-1-1-pq-p-q-1-pi-2-3-




Question Number 89936 by ~blr237~ last updated on 20/Apr/20
Prove that Σ_(p≥1,q≥1)   (1/(pq(p+q−1))) =(π^2 /3)
Provethatp1,q11pq(p+q1)=π23
Answered by maths mind last updated on 20/Apr/20
Σ_(p,q≥2) ∫_0 ^1 (x^(p+q−2) /(pq))dx  =∫_(0 ) ^1 (Σ_(q≥1) (x^(q−1) /q))(Σ_(p≥1) (x^(p−1) /p))dx  =∫_0 ^1 (((ln^2  (1−x))/x^2 ))dx  ln(1−x)=−u  x=1−e^(−u)   =∫_0 ^(+∞) ((u^2 e^(−u) )/((1−e^(−u) )^2 ))  (1/(1−e^(−u) ))=Σ_(k≥0) e^(−ku)   ⇒(e^(−u) /((1−e^(−u) )^2 ))=Σ_(k≥1) ke^(−ku)   =Σ_(k≥1) ∫_0 ^(+∞) ku^2 e^(−ku) du  =Σ_(k≥1) ∫_0 ^(+∞) ((w^2 e^(−w) )/k^2 )dw  =Σ_(k≥1) (1/k^2 ).∫_0 ^∞ w^2 e^(−w) dw=Γ(3).Σ_(k≥1) (1/k^2 )=Γ(3)ζ(2)=2.(π^2 /6)=(π^2 /3)
p,q201xp+q2pqdx=01(q1xq1q)(p1xp1p)dx=01(ln2(1x)x2)dxln(1x)=ux=1eu=0+u2eu(1eu)211eu=k0ekueu(1eu)2=k1keku=k10+ku2ekudu=k10+w2ewk2dw=k11k2.0w2ewdw=Γ(3).k11k2=Γ(3)ζ(2)=2.π26=π23

Leave a Reply

Your email address will not be published. Required fields are marked *