Menu Close

prove-that-P-n-1-1-1-n-n-2-2-sin-pi-2-pi-m-n-




Question Number 159681 by mnjuly1970 last updated on 20/Nov/21
      prove that :  P= Π_(n=1) ^∞ (1−(1/(n(n+2))) ) =^?  ((−(√2) sin(π(√2) ))/π)       m.n
provethat:P=n=1(11n(n+2))=?2sin(π2)πm.n
Answered by mindispower last updated on 21/Nov/21
Π_(n=1) ^m (1−(1/(n(n+2))))=Π_(n=1) ^m (((n+1−(√2))(n+1+(√2)))/(n(n+2)))  =((2.Γ(m+2−(√2))Γ(m+2+(√2)))/(Γ(m+1)Γ(m+3)Γ(2+(√2))Γ(2−(√2))))  Γ(1+(√2))=(√2)Γ((√2))  ⇔((2Γ(m+2−(√2))Γ(m+2+(√2)))/(m!.(m+2)!Γ((√2))Γ(1−(√2)).(√2).(1−(√2))(1+(√2))))  =−((√2)/(π/(sin(π(√2))))).((Γ(m+2−(√2))Γ(m+2+(√2)))/(m!.(m+2)!))  Γ(z+a)∼(√(2π.))z^(a−(1/2)+z) e^(−z)   z=m+2  Γ(m+2−(√2))Γ(m+2+(√2))∼2π.(m+2)^(2m+3) e^(−2(m+2))   Γ(m+3)Γ(m+1)∼2π(m+3)^(m+(5/2)) (m+1)^(m+(1/2)) e^(−2m−4)   lim_(m→∞) ((Γ(m+2−(√2))Γ(m+2+(√2)))/(m!.(m+2)!))  =lim_(m→∞)  (((m+2)^(2m+3) )/((m+1)^(m+(1/2)) (m+3)^(m+(5/2)) ))  =lim_(m→∞) ((((m+2)^2 )/(m^2 +4m+3)))^m =lim_(m→∞) .(1+(1/(m^2 +4m+3)))^m =1  ⇒  Π_(n≥1) (1−(1/(n(n+2))))=lim_(m→∞) Π_(n=1) ^m (1−(1/(n(n+2))))=−(√2).((sin(π(√2)))/π).lim_(m→∞) .((Γ(m+2−(√2))Γ(m+2+(√2)))/(Γ(m+1)Γ(m+3)))=−(√2).((sin(π(√2)))/π)
mn=1(11n(n+2))=mn=1(n+12)(n+1+2)n(n+2)=2.Γ(m+22)Γ(m+2+2)Γ(m+1)Γ(m+3)Γ(2+2)Γ(22)Γ(1+2)=2Γ(2)2Γ(m+22)Γ(m+2+2)m!.(m+2)!Γ(2)Γ(12).2.(12)(1+2)=2πsin(π2).Γ(m+22)Γ(m+2+2)m!.(m+2)!Γ(z+a)2π.za12+zezz=m+2Γ(m+22)Γ(m+2+2)2π.(m+2)2m+3e2(m+2)Γ(m+3)Γ(m+1)2π(m+3)m+52(m+1)m+12e2m4limmΓ(m+22)Γ(m+2+2)m!.(m+2)!=limm(m+2)2m+3(m+1)m+12(m+3)m+52=limm((m+2)2m2+4m+3)m=limm.(1+1m2+4m+3)m=1n1(11n(n+2))=limmmn=1(11n(n+2))=2.sin(π2)π.limm.Γ(m+22)Γ(m+2+2)Γ(m+1)Γ(m+3)=2.sin(π2)π

Leave a Reply

Your email address will not be published. Required fields are marked *