Menu Close

Prove-that-p-n-a-1-a-2-a-n-n-n-a-1-a-2-a-n-n-N-




Question Number 45353 by pieroo last updated on 12/Oct/18
Prove that p(n)=((a_1 +a_2 +...+a_n )/n) ≥^n (√(a_1 a_2 ...a_n ))  ∀ n ∈N
Provethatp(n)=a1+a2++annna1a2annN
Commented by pieroo last updated on 12/Oct/18
please help
pleasehelp
Commented by Kunal12588 last updated on 12/Oct/18
trying PMI(Induction)
tryingPMI(Induction)
Commented by pieroo last updated on 14/Oct/18
I still need help urgently please
Istillneedhelpurgentlyplease
Answered by Kunal12588 last updated on 12/Oct/18
p(n):((a_1 +a_2 +a_3 +...+a_n )/n)≥((a_1 a_2 a_3 ...a_n ))^(1/n)   p(1):(a_1 /1)=a_1            (a_1 )^(1/1) =a_1   ∴p(1) satisfies p(n)  p(2):((a_1 +a_2 )/2)           ((a_1 a_2 ))^(1/2) =(√a_1 )(√a_2 )  (1/2)((√a_1 )−(√a_2 ))^2 ≥0  ⇒ ((a_1 +a_2 −2(√a_1 )(√a_2 ))/2)≥0  ⇒((a_1 +a_2 )/2)≥(√a_1 )(√a_2 )  ∴p(2) satisfies p(n)  let us assume p(n) is true for n=k  ⇒p(k):((a_1 +a_2 +a_3 +...+a_k )/k)≥((a_1 a_2 a_3 ...a_k ))^(1/k)   now we have to show  p(k+1):((a_1 +a_2 +a_3 +...+a_(k+1) )/(k+1))≥((a_1 a_2 a_3 ...a_(k+1) ))^(1/(k+1))   please help
p(n):a1+a2+a3++anna1a2a3annp(1):a11=a1a11=a1p(1)satisfiesp(n)p(2):a1+a22a1a22=a1a212(a1a2)20a1+a22a1a220a1+a22a1a2p(2)satisfiesp(n)letusassumep(n)istrueforn=kp(k):a1+a2+a3++akka1a2a3akknowwehavetoshowp(k+1):a1+a2+a3++ak+1k+1a1a2a3ak+1k+1pleasehelp
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
i am hereby posting proof given in Higher Algebrs  Bernard and child...
iamherebypostingproofgiveninHigherAlgebrsBernardandchild
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18

Leave a Reply

Your email address will not be published. Required fields are marked *