Menu Close

Prove-that-p-n-a-1-a-2-a-n-n-n-a-1-a-2-a-n-n-N-




Question Number 45353 by pieroo last updated on 12/Oct/18
Prove that p(n)=((a_1 +a_2 +...+a_n )/n) ≥^n (√(a_1 a_2 ...a_n ))  ∀ n ∈N
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}\left(\mathrm{n}\right)=\frac{\boldsymbol{\mathrm{a}}_{\mathrm{1}} +\boldsymbol{\mathrm{a}}_{\mathrm{2}} +…+\boldsymbol{\mathrm{a}}_{\mathrm{n}} }{\mathrm{n}}\:\geqslant\:^{\mathrm{n}} \sqrt{\boldsymbol{\mathrm{a}}_{\mathrm{1}} \boldsymbol{\mathrm{a}}_{\mathrm{2}} …\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\forall\:\mathrm{n}\:\in\boldsymbol{\mathrm{N}} \\ $$
Commented by pieroo last updated on 12/Oct/18
please help
$$\mathrm{please}\:\mathrm{help} \\ $$
Commented by Kunal12588 last updated on 12/Oct/18
trying PMI(Induction)
$${trying}\:{PMI}\left({Induction}\right) \\ $$
Commented by pieroo last updated on 14/Oct/18
I still need help urgently please
$$\mathrm{I}\:\mathrm{still}\:\mathrm{need}\:\mathrm{help}\:\mathrm{urgently}\:\mathrm{please} \\ $$
Answered by Kunal12588 last updated on 12/Oct/18
p(n):((a_1 +a_2 +a_3 +...+a_n )/n)≥((a_1 a_2 a_3 ...a_n ))^(1/n)   p(1):(a_1 /1)=a_1            (a_1 )^(1/1) =a_1   ∴p(1) satisfies p(n)  p(2):((a_1 +a_2 )/2)           ((a_1 a_2 ))^(1/2) =(√a_1 )(√a_2 )  (1/2)((√a_1 )−(√a_2 ))^2 ≥0  ⇒ ((a_1 +a_2 −2(√a_1 )(√a_2 ))/2)≥0  ⇒((a_1 +a_2 )/2)≥(√a_1 )(√a_2 )  ∴p(2) satisfies p(n)  let us assume p(n) is true for n=k  ⇒p(k):((a_1 +a_2 +a_3 +...+a_k )/k)≥((a_1 a_2 a_3 ...a_k ))^(1/k)   now we have to show  p(k+1):((a_1 +a_2 +a_3 +...+a_(k+1) )/(k+1))≥((a_1 a_2 a_3 ...a_(k+1) ))^(1/(k+1))   please help
$${p}\left({n}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +…+{a}_{{n}} }{{n}}\geqslant\sqrt[{{n}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} …{a}_{{n}} } \\ $$$${p}\left(\mathrm{1}\right):\frac{{a}_{\mathrm{1}} }{\mathrm{1}}={a}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{1}}]{{a}_{\mathrm{1}} }={a}_{\mathrm{1}} \\ $$$$\therefore{p}\left(\mathrm{1}\right)\:{satisfies}\:{p}\left({n}\right) \\ $$$${p}\left(\mathrm{2}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{2}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }=\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{{a}_{\mathrm{1}} }−\sqrt{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\:\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} −\mathrm{2}\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} }}{\mathrm{2}}\geqslant\mathrm{0} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }{\mathrm{2}}\geqslant\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} } \\ $$$$\therefore{p}\left(\mathrm{2}\right)\:{satisfies}\:{p}\left({n}\right) \\ $$$${let}\:{us}\:{assume}\:{p}\left({n}\right)\:{is}\:{true}\:{for}\:{n}={k} \\ $$$$\Rightarrow{p}\left({k}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +…+{a}_{{k}} }{{k}}\geqslant\sqrt[{{k}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} …{a}_{{k}} } \\ $$$${now}\:{we}\:{have}\:{to}\:{show} \\ $$$${p}\left({k}+\mathrm{1}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +…+{a}_{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\geqslant\sqrt[{{k}+\mathrm{1}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} …{a}_{{k}+\mathrm{1}} } \\ $$$${please}\:{help} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
i am hereby posting proof given in Higher Algebrs  Bernard and child...
$${i}\:{am}\:{hereby}\:{posting}\:{proof}\:{given}\:{in}\:{Higher}\:{Algebrs} \\ $$$${Bernard}\:{and}\:{child}… \\ $$$$\: \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18

Leave a Reply

Your email address will not be published. Required fields are marked *