Question Number 104243 by M±th+et+s last updated on 20/Jul/20
$${prove}\:{that} \\ $$$$\pi=\mathrm{2}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×….. \\ $$
Answered by OlafThorendsen last updated on 20/Jul/20
$$\mathrm{sin}{x}\:=\:\mathrm{2sin}\frac{{x}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}} \\ $$$$\mathrm{sin}{x}\:=\:\mathrm{2}^{\mathrm{2}} \mathrm{sin}\frac{{x}}{\mathrm{4}}\mathrm{cos}\frac{{x}}{\mathrm{4}}\mathrm{cos}\frac{{x}}{\mathrm{2}} \\ $$$$… \\ $$$$\mathrm{sin}{x}\:=\:\mathrm{2}^{{n}} \mathrm{sin}\frac{{x}}{\mathrm{2}^{{n}} }\mathrm{cos}\frac{{x}}{\mathrm{2}^{{n}} }\mathrm{cos}\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }… \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{continued}… \\ $$
Answered by Dwaipayan Shikari last updated on 20/Jul/20
$$\mathrm{2}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}…… \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}……\mathrm{n}\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{cos}\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2cos}\frac{\pi}{\mathrm{8}}\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{16}}\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{32}}}…..\mathrm{n} \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{cos}\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\left(\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{0}\right)……..\mathrm{cos}\frac{\pi}{\mathrm{8}}}\right) \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{cos}\frac{\pi}{\mathrm{4}}.\left(\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{8}}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{16}}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{32}}}….\right)\mathrm{continue} \\ $$