Menu Close

prove-that-pi-2-2-2-2-2-2-2-2-2-2-




Question Number 104243 by  M±th+et+s last updated on 20/Jul/20
prove that  π=2×(2/( (√2)))×(2/( (√(2+(√2)))))×(2/( (√(2+(√(2+(√2)))))))×.....
$${prove}\:{that} \\ $$$$\pi=\mathrm{2}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×….. \\ $$
Answered by OlafThorendsen last updated on 20/Jul/20
sinx = 2sin(x/2)cos(x/2)  sinx = 2^2 sin(x/4)cos(x/4)cos(x/2)  ...  sinx = 2^n sin(x/2^n )cos(x/2^n )cos(x/2^(n−1) )...  to be continued...
$$\mathrm{sin}{x}\:=\:\mathrm{2sin}\frac{{x}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}} \\ $$$$\mathrm{sin}{x}\:=\:\mathrm{2}^{\mathrm{2}} \mathrm{sin}\frac{{x}}{\mathrm{4}}\mathrm{cos}\frac{{x}}{\mathrm{4}}\mathrm{cos}\frac{{x}}{\mathrm{2}} \\ $$$$… \\ $$$$\mathrm{sin}{x}\:=\:\mathrm{2}^{{n}} \mathrm{sin}\frac{{x}}{\mathrm{2}^{{n}} }\mathrm{cos}\frac{{x}}{\mathrm{2}^{{n}} }\mathrm{cos}\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }… \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{continued}… \\ $$
Answered by Dwaipayan Shikari last updated on 20/Jul/20
2.(2/( (√2))).(2/( (√(2+(√2))))).(2/( (√(2+(√(2+(√2)))))))......  lim_(n→∞)   S_n =2^n ((1/( (√2))).(1/( (√(2+(√2))))).(1/( (√(2+(√(2+(√2)))))))......n)  S_n =2^n cos(π/4).(1/(2cos(π/8)2)).(1/(cos(π/(16))2)).(1/(cos(π/(32)))).....n  S_n =2^n cos(π/4).(1/2^n )((1/(cos(0)........cos(π/8))))    S_n =cos(π/4).((1/(cos(π/8))).(1/(cos(π/(16)))).(1/(cos(π/(32))))....)continue
$$\mathrm{2}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}…… \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}……\mathrm{n}\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{cos}\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2cos}\frac{\pi}{\mathrm{8}}\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{16}}\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{32}}}…..\mathrm{n} \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{cos}\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\left(\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{0}\right)……..\mathrm{cos}\frac{\pi}{\mathrm{8}}}\right) \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{cos}\frac{\pi}{\mathrm{4}}.\left(\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{8}}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{16}}}.\frac{\mathrm{1}}{\mathrm{cos}\frac{\pi}{\mathrm{32}}}….\right)\mathrm{continue} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *