Menu Close

prove-that-pi-2-pi-4-2cos-x-sin-x-dx-pi-2-pi-4-cos-x-sin-x-dx-




Question Number 109082 by 1777 last updated on 21/Aug/20
prove that :  ∫_(−(π/2)) ^(−(π/4)) 2cos(x)+sin(x)dx≤∫_(−(π/2)) ^(−(π/4)) cos(x)−sin(x)dx
$${prove}\:{that}\:: \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} \mathrm{2}{cos}\left({x}\right)+{sin}\left({x}\right){dx}\leqslant\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} {cos}\left({x}\right)−{sin}\left({x}\right){dx} \\ $$
Answered by malwan last updated on 21/Aug/20
−(π/2)<x<−(π/4)  ⇒0<cos x<((√2)/2)  ⇒0<2cos x<(√2)  −1<sin x<−((√2)/2)  ⇒2cos x + sin x<(√2)−((√2)/2)=((√2)/2)  cos x − sin x<((√2)/2) + ((√2)/2) = (√2)  ((√2)/2) < (√2)  ⇒2cos x − sin x<cos x−sin x  ∴ _(−(π/2)) ∫^(−(π/4)) (2cos x + sin x)dx <      _(−(π/2)) ∫^(−(π/4)) (cos x − sin x)dx
$$−\frac{\pi}{\mathrm{2}}<{x}<−\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{0}<{cos}\:{x}<\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{0}<\mathrm{2}{cos}\:{x}<\sqrt{\mathrm{2}} \\ $$$$−\mathrm{1}<{sin}\:{x}<−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{cos}\:{x}\:+\:{sin}\:{x}<\sqrt{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$${cos}\:{x}\:−\:{sin}\:{x}<\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\sqrt{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:<\:\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{cos}\:{x}\:−\:{sin}\:{x}<{cos}\:{x}−{sin}\:{x} \\ $$$$\therefore\:_{−\frac{\pi}{\mathrm{2}}} \int^{−\frac{\pi}{\mathrm{4}}} \left(\mathrm{2}{cos}\:{x}\:+\:{sin}\:{x}\right){dx}\:< \\ $$$$\:\:\:\:_{−\frac{\pi}{\mathrm{2}}} \int^{−\frac{\pi}{\mathrm{4}}} \left({cos}\:{x}\:−\:{sin}\:{x}\right){dx} \\ $$
Commented by 1777 last updated on 21/Aug/20
nice

Leave a Reply

Your email address will not be published. Required fields are marked *