Menu Close

prove-that-product-of-lengths-of-perpendiculars-from-any-point-of-hyperbola-to-its-asymptotes-is-constant-




Question Number 43921 by peter frank last updated on 17/Sep/18
prove that product of lengths of perpendiculars  from any point of hyperbola to its  asymptotes is constant
provethatproductoflengthsofperpendicularsfromanypointofhyperbolatoitsasymptotesisconstant
Answered by math1967 last updated on 18/Sep/18
let equn. of hyperbola is(x^2 /a^2 )−(y^2 /b^2 )=1  equns.of asymptotes are bx−ay=0  and bx+ay=0 let any pt(asec∅,btanφ)  perpendicular from pt. to asymptotes  are p_1 ,p_2   ∴p_1 =((basecφ−abtanφ)/( (√(b^2 −a^2 ))))  p_2 =((basecφ+abtanφ)/( (√(b^2 +a^2 ))))  ∴p_1 ×p_2 =((a^2 b^2 (sec^2 φ−tan^2 φ))/( (√(b^4 −a^4 ))))                 =((a^2 b^2 )/( (√(b^4 −a^4 ))))=constant
letequn.ofhyperbolaisx2a2y2b2=1equns.ofasymptotesarebxay=0andbx+ay=0letanypt(asec,btanϕ)perpendicularfrompt.toasymptotesarep1,p2p1=basecϕabtanϕb2a2p2=basecϕ+abtanϕb2+a2p1×p2=a2b2(sec2ϕtan2ϕ)b4a4=a2b2b4a4=constant

Leave a Reply

Your email address will not be published. Required fields are marked *