Menu Close

Prove-that-r-1-2n-1-1-r-1-0-1-x-r-1-x-2n-r-dx-0-1-1-x-2n-x-2n-1-x-2n-1-x-2n-1-dx-




Question Number 24142 by Tinkutara last updated on 13/Nov/17
Prove that  Σ_(r=1) ^(2n−1) (−1)^(r−1) (∫_0 ^1 x^r (1−x)^(2n−r) dx)  =∫_0 ^1 [(1−x)^(2n) +x^(2n) −(1−x)^(2n+1) −x^(2n+1) ]dx
Provethat2n1r=1(1)r1(10xr(1x)2nrdx)=10[(1x)2n+x2n(1x)2n+1x2n+1]dx
Commented by Tinkutara last updated on 13/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by moxhix last updated on 13/Nov/17
⇔ShowΣ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r) =(1−x)^(2n) +x^(2n) −(1−x)^(2n+1) −x^(2n+1)   Let S=Σ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r)    (1−x)S+xS=Σ_(r=1) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) +Σ_(r=1) ^(2n−1) (−1)^(r−1) x^(r+1) (1−x)^(2n−r)                            S={x(1−x)^(2n) +Σ_(r=2) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) }+{Σ_(r=1) ^(2n−2) (−1)^(r−1) x^(r+1) (1−x)^(2n−r) +x^(2n) (1−x)}                           S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) (−1)^(r−1) x^r (1−x)^(2n−r+1) +{Σ_(r=2) ^(2n−1) (−1)^(r−2) x^r (1−x)^(2n−r+1) }_(r→r−1)                            S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) {(−1)^(r−1) x^r (1−x)^(2n−r+1) +(−1)^(r−2) x^r (1−x)^(2n−r+1) }                           S=x(1−x)^(2n) +x^(2n) (1−x)+Σ_(r=2) ^(2n−1) x^r (1−x)^(2n−r+1) {(−1)^(r−1) +(−1)^(r−2) }_(↑=0)                            S=x(1−x)^(2n) +x^(2n) (1−x)                           S={−(1−x)+1}(1−x)^(2n) +x^(2n) (1−x)                           S=(1−x)^(2n) −(1−x)^(2n+1) +x^(2n) −x^(2n+1)
Show2n1r=1(1)r1xr(1x)2nr=(1x)2n+x2n(1x)2n+1x2n+1LetS=2n1r=1(1)r1xr(1x)2nr(1x)S+xS=2n1r=1(1)r1xr(1x)2nr+1+2n1r=1(1)r1xr+1(1x)2nrS={x(1x)2n+2n1r=2(1)r1xr(1x)2nr+1}+{2n2r=1(1)r1xr+1(1x)2nr+x2n(1x)}S=x(1x)2n+x2n(1x)+2n1r=2(1)r1xr(1x)2nr+1+{2n1r=2(1)r2xr(1x)2nr+1}rr1S=x(1x)2n+x2n(1x)+2n1r=2{(1)r1xr(1x)2nr+1+(1)r2xr(1x)2nr+1}S=x(1x)2n+x2n(1x)+2n1r=2xr(1x)2nr+1{(1)r1+(1)r2}↑=0S=x(1x)2n+x2n(1x)S={(1x)+1}(1x)2n+x2n(1x)S=(1x)2n(1x)2n+1+x2nx2n+1

Leave a Reply

Your email address will not be published. Required fields are marked *