Prove-that-r-1-2n-1-1-r-1-0-1-x-r-1-x-2n-r-dx-0-1-1-x-2n-x-2n-1-x-2n-1-x-2n-1-dx- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 24142 by Tinkutara last updated on 13/Nov/17 Provethat∑2n−1r=1(−1)r−1(∫10xr(1−x)2n−rdx)=∫10[(1−x)2n+x2n−(1−x)2n+1−x2n+1]dx Commented by Tinkutara last updated on 13/Nov/17 ThankyouverymuchSir! Commented by moxhix last updated on 13/Nov/17 ⇔Show∑2n−1r=1(−1)r−1xr(1−x)2n−r=(1−x)2n+x2n−(1−x)2n+1−x2n+1LetS=∑2n−1r=1(−1)r−1xr(1−x)2n−r(1−x)S+xS=∑2n−1r=1(−1)r−1xr(1−x)2n−r+1+∑2n−1r=1(−1)r−1xr+1(1−x)2n−rS={x(1−x)2n+∑2n−1r=2(−1)r−1xr(1−x)2n−r+1}+{∑2n−2r=1(−1)r−1xr+1(1−x)2n−r+x2n(1−x)}S=x(1−x)2n+x2n(1−x)+∑2n−1r=2(−1)r−1xr(1−x)2n−r+1+{∑2n−1r=2(−1)r−2xr(1−x)2n−r+1}r→r−1S=x(1−x)2n+x2n(1−x)+∑2n−1r=2{(−1)r−1xr(1−x)2n−r+1+(−1)r−2xr(1−x)2n−r+1}S=x(1−x)2n+x2n(1−x)+∑2n−1r=2xr(1−x)2n−r+1{(−1)r−1+(−1)r−2}↑=0S=x(1−x)2n+x2n(1−x)S={−(1−x)+1}(1−x)2n+x2n(1−x)S=(1−x)2n−(1−x)2n+1+x2n−x2n+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-155215Next Next post: Question-24149 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.