Menu Close

Prove-that-r-1-r-2-r-3-4R-r-




Question Number 19122 by Tinkutara last updated on 05/Aug/17
Prove that r_1  + r_2  + r_3  = 4R + r
Provethatr1+r2+r3=4R+r
Answered by ajfour last updated on 05/Aug/17
2Rsin A=a  r_1 =(a/(tan (B/2)+tan (C/2)))  r=(a/(cot (B/2)+cot (C/2)))=((a(tan (B/2)tan (C/2)))/(tan (B/2)+tan (C/2)))  so  r_1 =(r/(tan (B/2)tan (C/2)))  ⇒ r_1 +r_2 +r_3 =r (((Σtan (A/2))/(Πtan (A/2))))   ......(i)  4Rsin (A/2)cos (A/2)=a=r(((tan (B/2)+tan (C/2))/(tan (B/2)tan (C/2))))  ⇒((4R)/r)=(((tan (B/2)+tan (C/2))(1+tan^2 (A/2)))/(Πtan (A/2)))  ((4R)/r)=((Σtan (A/2))/(Πtan (A/2)))+((tan^2 (A/2)(tan (B/2)+tan (C/2))−tan (A/2))/(Πtan (A/2)))  ((4R)/r)=((r_1 +r_2 +r_3 )/r)+((tan (A/2)(Σtan (B/2)tan (C/2)−1−tan (B/2)tan (C/2)))/(Πtan (A/2)))  but Σtan (B/2)tan (C/2)−1=0   , so  ((4R)/r)=((r_1 +r_2 +r_3 )/r)−1  ⇒  r_1 +r_2 +r_3 =4R+r .
2RsinA=ar1=atanB2+tanC2r=acotB2+cotC2=a(tanB2tanC2)tanB2+tanC2sor1=rtanB2tanC2r1+r2+r3=r(ΣtanA2ΠtanA2)(i)4RsinA2cosA2=a=r(tanB2+tanC2tanB2tanC2)4Rr=(tanB2+tanC2)(1+tan2A2)ΠtanA24Rr=ΣtanA2ΠtanA2+tan2A2(tanB2+tanC2)tanA2ΠtanA24Rr=r1+r2+r3r+tanA2(ΣtanB2tanC21tanB2tanC2)ΠtanA2butΣtanB2tanC21=0,so4Rr=r1+r2+r3r1r1+r2+r3=4R+r.
Commented by Tinkutara last updated on 06/Aug/17
Thank you very much Sir! I really  appreciate.
ThankyouverymuchSir!Ireallyappreciate.
Commented by ajfour last updated on 05/Aug/17
Commented by ajfour last updated on 05/Aug/17
from figure:  Rsin A=(a/2)     r(cot (B/2)+cot (C/2))=a  ⇒  r=a(((tan (B/2)tan (C/2))/(tan (B/2)+tan (C/2))))  and  r_1 (tan (B/2)+tan (C/2))=a  or  r_1 =(r/(tan (B/2)tan (C/2))) .
fromfigure:RsinA=a2r(cotB2+cotC2)=ar=a(tanB2tanC2tanB2+tanC2)andr1(tanB2+tanC2)=aorr1=rtanB2tanC2.

Leave a Reply

Your email address will not be published. Required fields are marked *