Menu Close

prove-that-s-1-s-pi-sinspi-




Question Number 122045 by mohammad17 last updated on 13/Nov/20
prove that Γs Γ1−s=(π/(sinsπ))
provethatΓsΓ1s=πsinsπ
Commented by Dwaipayan Shikari last updated on 14/Nov/20
Γ(s)=(e^(−γs) /s)Π^∞ e^(s/n) (1+(s/n))^(−1)   Γ(1−s)=(e^(−γ+γs) /(1−s))Π^∞ e^((1−s)/n) (1+((1−s)/n))^(−1)   Γ(s)Γ(1−s)=(e^(−γ) /(s(1−s)))Π^∞ e^(1/n) (1+(s/n))^(−1) (1−(s/n)+(1/n))^(−1)   ((πs)/(sinπs))=Π^∞ (1−(s/n))^(−1) (1+(s/n))^(−1)   Γ(s)Γ(1−s)=(e^(−γ+Σ^∞ (1/n)) /(s(1−s))).((πs)/(sinπs)).Π^∞ (1−(s/n))Π^∞ (1−(s/n)+(1/n))^(−1)   Γ(s)Γ(1−s)=(e^(log(n)) /((1−s))).(π/(sinπs))((1−s)(((2−s)/2))...)((1.2.3)/((2−s)(3−s)(4−s)))  Γ(s)Γ(1−s)=lim_(n→∞)  ((πn)/(sinπs)).(1/(n−s+1))  Γ(s)Γ(1−s)=(π/(sinπs))
Γ(s)=eγssesn(1+sn)1Γ(1s)=eγ+γs1se1sn(1+1sn)1Γ(s)Γ(1s)=eγs(1s)e1n(1+sn)1(1sn+1n)1πssinπs=(1sn)1(1+sn)1Γ(s)Γ(1s)=eγ+1ns(1s).πssinπs.(1sn)(1sn+1n)1Γ(s)Γ(1s)=elog(n)(1s).πsinπs((1s)(2s2))1.2.3(2s)(3s)(4s)Γ(s)Γ(1s)=limnπnsinπs.1ns+1Γ(s)Γ(1s)=πsinπs
Commented by mnjuly1970 last updated on 14/Nov/20
bravo mr dwaipayan..  very nice as always...
bravomrdwaipayan..veryniceasalways
Commented by Dwaipayan Shikari last updated on 14/Nov/20
With pleasure��
Answered by mnjuly1970 last updated on 14/Nov/20
 proof by using double    integral.    Γ(s)=∫_0 ^( ∞) x^(s−1) e^(−x) dx ...(i)     Γ(1−s)=∫_0 ^( ∞) y^(−s) e^(−y) dy...(ii)   from  (i) and (ii):    Γ(s)Γ(1−s)=∫_0 ^( ∞) ∫_0 ^( ∞) (1/x)((x/y))^s e^(−(x+y)) dx dy     {_((x/y)=v) ^(x+y=u)  ⇒{_(x=((uv)/(1+v))) ^(y=(u/(1+v)))       dxdy=∣((∂(x,y))/(∂(u,v)))∣dudv  where        ((∂(x,y))/(∂(u,v)))=J(u,v)= determinant ((((∂x/∂u)          (∂x/∂v))),(((∂y/∂u)             (∂y/∂v) )))      ∴  J(u,v)=x_u y_v −x_v y_u =((v/(1+v)))(((−u)/((1+v)^2 )))−((u/((1+v)^2 )))((1/(1+v)))         J(u,v)=((−u)/((1+v)^2 )) ✓       Γ(s)Γ(1−s)=∫_0 ^( ∞) ∫_0 ^( ∞) ((1+v)/(uv))v^s e^(−u) ∣((−u)/((1+v)^2 ))∣dudv  =∫_0 ^( ∞) ∫_0 ^( ∞) (v^(s−1) /(1+v))e^(−u) dudv=∫_0 ^( ∞) (v^(s−1) /(1+v))dv=_(analysis) ^(complex) (π/(sin(πs))) ✓         ...m.n...
proofbyusingdoubleintegral.Γ(s)=0xs1exdx(i)Γ(1s)=0yseydy(ii)from(i)and(ii):Γ(s)Γ(1s)=001x(xy)se(x+y)dxdy{xy=vx+y=u{x=uv1+vy=u1+vdxdy=∣(x,y)(u,v)dudvwhere(x,y)(u,v)=J(u,v)=|xuxvyuyv|J(u,v)=xuyvxvyu=(v1+v)(u(1+v)2)(u(1+v)2)(11+v)J(u,v)=u(1+v)2Γ(s)Γ(1s)=001+vuvvseuu(1+v)2dudv=00vs11+veududv=0vs11+vdv=complexanalysisπsin(πs)m.n
Commented by Dwaipayan Shikari last updated on 14/Nov/20
Great!
Great!
Commented by mnjuly1970 last updated on 14/Nov/20
thank you..
thankyou..

Leave a Reply

Your email address will not be published. Required fields are marked *