Question Number 165558 by som(math1967) last updated on 03/Feb/22

Answered by Rohit143Jo last updated on 04/Feb/22
![Ans: Let, x=((2ฯ)/7) โ 7x=2ฯ LHS, Sec(x)+Sec(2x)+Sec(4x) โ (1/(Cos(x))) + (1/(Cos(2x))) + (1/(Cos(4x))) โ ((Cos(2x).Cos(4x) + Cos(x).Cos(4x) + Cos(x).Cos(2x))/(Cos(x).Cos(2x).Cos(4x))) โ ((2.Cos(2x).Cos(4x)+2.Cos(x).Cos(4x)+2.Cos(x).Cos(2x))/(2.Cos(x).Cos(2x).Cos(4x))) โ ((Sin(x)[Cos(6x)+Cos(2x)+Cos(5x)+Cos(3x)+Cos(3x)+Cos(x)])/(2Sin(x)Cos(x).Cos(2x)Cos(4x))) โ ((2Sin(x)[Cos(2ฯโx)+Cos(2x)+Cos(2ฯโ2x)+Cos(2ฯโ4x)+Cos(2ฯโ4x)+Cos(x)])/(2Sin(2x)Cos(2x).Cos(4x))) โ ((4Sin(x)[Cos(x)+Cos(2x)+Cos(2x)+Cos(4x)+Cos(4x)+Cos(x)])/(2Sin(4x)Cos(4x))) โ ((4[2Sin(x)Cos(x)+2Cos(2x)Sin(x)+2Cos(4x)Sin(x)])/(Sin(8x))) โ ((4[Sin(2x)+Sin(3x)โSin(x)+Sin(5x)โSin(3x)])/(Sin(8x))) โ ((4[โSin(x)+Sin(2x)+Sin(2ฯโ2x)])/(Sin(2ฯ+x))) โ ((4[โSin(x)+Sin(2x)โSin(2x)])/(Sin(x))) โ ((4[โSin(x)])/(Sin(x))) โ โ4, LHS (Proved)](https://www.tinkutara.com/question/Q165577.png)
Commented by som(math1967) last updated on 04/Feb/22

Commented by Rohit143Jo last updated on 04/Feb/22

Commented by peter frank last updated on 06/Feb/22
