Menu Close

prove-that-sec-tan-1-x-x-2-1-




Question Number 182842 by malwan last updated on 15/Dec/22
prove that  sec(tan^(−1) x)=(√(x^2 +1))
$${prove}\:{that} \\ $$$${sec}\left({tan}^{−\mathrm{1}} {x}\right)=\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$
Answered by cortano1 last updated on 15/Dec/22
 let x = tan t    (√(x^2 +1)) = (√(tan^2 t+1)) = (√(sec^2 t)) = sec t  ⇒sec (tan^(−1) (tan t))= sec t
$$\:{let}\:{x}\:=\:\mathrm{tan}\:{t}\: \\ $$$$\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:=\:\sqrt{\mathrm{tan}\:^{\mathrm{2}} {t}+\mathrm{1}}\:=\:\sqrt{\mathrm{sec}\:^{\mathrm{2}} {t}}\:=\:\mathrm{sec}\:{t} \\ $$$$\Rightarrow\mathrm{sec}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:{t}\right)\right)=\:\mathrm{sec}\:{t}\: \\ $$
Commented by malwan last updated on 15/Dec/22
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Answered by BaliramKumar last updated on 15/Dec/22
LHS = sec(tan^(−1) x)  LHS = (√(sec^2 (tan^(−1) x)))  LHS = (√(tan^2 (tan^(−1) x)+1))  LHS = (√(x^2 +1)) = RHS
$${LHS}\:=\:{sec}\left({tan}^{−\mathrm{1}} {x}\right) \\ $$$${LHS}\:=\:\sqrt{{sec}^{\mathrm{2}} \left({tan}^{−\mathrm{1}} {x}\right)} \\ $$$${LHS}\:=\:\sqrt{{tan}^{\mathrm{2}} \left({tan}^{−\mathrm{1}} {x}\right)+\mathrm{1}} \\ $$$${LHS}\:=\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:=\:{RHS} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by malwan last updated on 15/Dec/22
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$
Answered by manxsol last updated on 16/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *