Menu Close

prove-that-sin-2x-2h-sin-2x-2cos-2x-h-sin-h-




Question Number 128130 by physicstutes last updated on 04/Jan/21
prove that    sin(2x + 2h)−sin 2x = 2cos(2x +h)sin h
provethatsin(2x+2h)sin2x=2cos(2x+h)sinh
Answered by Olaf last updated on 04/Jan/21
sina−sinb = 2sin(((a−b)/2))cos(((a+b)/2)) (1)  a = 2x+2h and b = 2x  (1) :  sin(2x+2h)−sin(2x) =   2sinhcos(2x+h)
sinasinb=2sin(ab2)cos(a+b2)(1)a=2x+2handb=2x(1):sin(2x+2h)sin(2x)=2sinhcos(2x+h)
Answered by Olaf last updated on 04/Jan/21
You can use Moivre :  sin(2x+2h)−sin2x =   ((e^(i(2x+2h)) −e^(−i(2x+2h)) )/(2i))−((e^(2ix) −e^(−2ix) )/(2i)) =  (1/(2i))[e^(ih) (e^(i(2x+h)) +e^(−i(2x+h)) )−e^(−ih) (e^(i(2x+h)) +e^(−i(2x+h)) )] =  2((e^(ih) −e^(−ih) )/(2i))(((e^(i(2x+h)) +e^(−i(2x+h)) )/2)) =   2sinhcos(2x+h)
YoucanuseMoivre:sin(2x+2h)sin2x=ei(2x+2h)ei(2x+2h)2ie2ixe2ix2i=12i[eih(ei(2x+h)+ei(2x+h))eih(ei(2x+h)+ei(2x+h))]=2eiheih2i(ei(2x+h)+ei(2x+h)2)=2sinhcos(2x+h)

Leave a Reply

Your email address will not be published. Required fields are marked *