Menu Close

Prove-that-sin-36-10-2-5-4-




Question Number 163171 by ZiYangLee last updated on 04/Jan/22
Prove that   sin 36° = ((√(10−2(√5^ )))/4)
Provethatsin36°=10254
Answered by mr W last updated on 04/Jan/22
sin (3×18^° )=sin (54°)=cos (36°)=cos (2×18°)  3 sin 18°−4 sin^3  18°=1−2 sin^2  18°  let t=sin 18°  3t−4t^3 =1−2t^2   4t^3 −2t^2 −3t+1=0  4t^3 −4t^2 +2t^2 −2t−t+1=0  (t−1)(4t^2 +2t−1)=0  t≠1  ⇒4t^2 +2t−1=0  ⇒t=((−1+(√5))/4)=sin 18°  cos 18°=(√(1−((((√5)−1)/4))^2 ))=((√(10+2(√5)))/4)  sin 36°=2 sin 18° cos 18°        =2×((−1+(√5))/4)×((√(10+2(√5)))/4)        =((√((10+2(√5))(6−2(√5))))/8)        =((√(10−2(√5)))/4)
sin(3×18°)=sin(54°)=cos(36°)=cos(2×18°)3sin18°4sin318°=12sin218°lett=sin18°3t4t3=12t24t32t23t+1=04t34t2+2t22tt+1=0(t1)(4t2+2t1)=0t14t2+2t1=0t=1+54=sin18°cos18°=1(514)2=10+254sin36°=2sin18°cos18°=2×1+54×10+254=(10+25)(625)8=10254
Commented by peter frank last updated on 05/Jan/22
thank you
thankyou
Commented by henderson last updated on 07/Jan/22
please, sir  W !  how you get the second line ... ?
please,sirW!howyougetthesecondline?
Commented by mr W last updated on 07/Jan/22
the formulas for sin 3α and cos 3α  are very useful. you should memorise  them. but if you can′t, you can also  get them easily like in following way:  sin 3α  =sin (2α+α)  =sin 2α cos α+cos 2α sin α  =2sin α cos^2  α+(1−2 sin^2  α) sin α  =2sin α (1−sin^2  α)+(1−2 sin^2  α) sin α  =2sin α −2 sin^3  α+ sin α−2 sin^3  α  =3sin α −4 sin^3  α  =(3−4 sin^2  α)sin α
theformulasforsin3αandcos3αareveryuseful.youshouldmemorisethem.butifyoucant,youcanalsogetthemeasilylikeinfollowingway:sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos2α+(12sin2α)sinα=2sinα(1sin2α)+(12sin2α)sinα=2sinα2sin3α+sinα2sin3α=3sinα4sin3α=(34sin2α)sinα
Commented by greg_ed last updated on 07/Jan/22
very good
verygood

Leave a Reply

Your email address will not be published. Required fields are marked *