Menu Close

Prove-that-sin-5A-5-cos-4-A-sin-A-10-cos-2-A-sin-3-A-sin-5-A-




Question Number 17866 by Tinkutara last updated on 11/Jul/17
Prove that sin 5A = 5 cos^4  A sin A −  10 cos^2  A sin^3  A + sin^5  A
Provethatsin5A=5cos4AsinA10cos2Asin3A+sin5A
Answered by alex041103 last updated on 13/Jul/17
sin5A=sin(2A+3A)  We use  sin(A+B)=sinAcosB+sinBcosA  sin2A=2sinAcosA  cos2A=cos^2 A−sin^2 A  sin3A=3sinA−4sin^3 A  cos3A=4cos^3 A−3cosA  And we have  sin5A=8sinAcos^4 A−3sinAcos^2 A  −3sin^3 A−4sin^3 Acos^2 A+4sin^5 A=  =5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A  +3sinA(sin^4 A+2sin^2 Acos^2 A+cos^4 A−sin^2 A−cos^2 A)  =5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A  +3sinA[(sin^2 A+cos^2 A)^2 −(sin^2 A+cos^2 A)]  =5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A  +3sinA(1^2 −1)=  =5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A  +3sinA(0)=  =5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A  ⇒sin5A=5cos^4 AsinA−10cos^2 Asin^3 A+sin^5 A
sin5A=sin(2A+3A)Weusesin(A+B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=cos2Asin2Asin3A=3sinA4sin3Acos3A=4cos3A3cosAAndwehavesin5A=8sinAcos4A3sinAcos2A3sin3A4sin3Acos2A+4sin5A==5cos4AsinA10cos2Asin3A+sin5A+3sinA(sin4A+2sin2Acos2A+cos4Asin2Acos2A)=5cos4AsinA10cos2Asin3A+sin5A+3sinA[(sin2A+cos2A)2(sin2A+cos2A)]=5cos4AsinA10cos2Asin3A+sin5A+3sinA(121)==5cos4AsinA10cos2Asin3A+sin5A+3sinA(0)==5cos4AsinA10cos2Asin3A+sin5Asin5A=5cos4AsinA10cos2Asin3A+sin5A
Commented by Tinkutara last updated on 13/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *