Menu Close

prove-that-sin-n-x-dx-p-n-p-2-1-n-cos-x-sin-n-1-x-p-1-sin-n-2-x-dx-




Question Number 63566 by aliesam last updated on 05/Jul/19
prove that    ∫sin^n (x) dx , p∈n , p≥2 =− (1/n)cos(x) sin^(n−1) (x) + (p−1)∫sin^(n−2) (x) dx
provethatsinn(x)dx,pn,p2=1ncos(x)sinn1(x)+(p1)sinn2(x)dx
Commented by aliesam last updated on 05/Jul/19
thats right it was a typo
thatsrightitwasatypo
Commented by MJS last updated on 05/Jul/19
it′s not true. the formula is for (n≥2)∈N  ∫sin^n  x dx=−(1/n)cos x sin^(n−1)  x +((n−1)/n)∫sin^(n−2)  x dx  ⇒ p−1=((n−1)/n) ⇔ p=2−(1/n) ⇒ p∉N∧p<2
itsnottrue.theformulaisfor(n2)Nsinnxdx=1ncosxsinn1x+n1nsinn2xdxp1=n1np=21npNp<2

Leave a Reply

Your email address will not be published. Required fields are marked *