Menu Close

prove-that-sin-x-cos-x-2-cos-x-pi-4-




Question Number 105892 by mohammad17 last updated on 01/Aug/20
prove that sin(x)+cos(x)=(√2)cos(x−(π/4))  ?
$${prove}\:{that}\:{sin}\left({x}\right)+{cos}\left({x}\right)=\sqrt{\mathrm{2}}{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\:\:? \\ $$
Answered by john santu last updated on 01/Aug/20
sin x+cos x = p  (1/( (√2))) sin x+(1/( (√2))) cos x = (p/( (√2)))  ⇒ sin ((π/4))sin x+ cos ((π/4))cos x  = (p/( (√2)))    (recall : cos t cos h + sin t sin h  = cos (t−h) )  ⇔ cos (x−(π/4)) = (p/( (√2)))  p = (√2) cos (x−(π/4)).  proved.
$$\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:{p} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:{x}\:=\:\frac{{p}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}\right)\mathrm{sin}\:{x}+\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\:{x} \\ $$$$=\:\frac{{p}}{\:\sqrt{\mathrm{2}}}\:\: \\ $$$$\left({recall}\::\:\mathrm{cos}\:{t}\:\mathrm{cos}\:{h}\:+\:\mathrm{sin}\:{t}\:\mathrm{sin}\:{h}\right. \\ $$$$\left.=\:\mathrm{cos}\:\left({t}−{h}\right)\:\right) \\ $$$$\Leftrightarrow\:\mathrm{cos}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)\:=\:\frac{{p}}{\:\sqrt{\mathrm{2}}} \\ $$$${p}\:=\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:\left({x}−\frac{\pi}{\mathrm{4}}\right). \\ $$$${proved}. \\ $$
Commented by mohammad17 last updated on 01/Aug/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *