Menu Close

Prove-that-sin-x-x-tan-x-for-x-lt-pi-2-




Question Number 56681 by Joel578 last updated on 21/Mar/19
Prove that  sin ∣x∣ ≤ ∣x∣ ≤ tan ∣x∣    for    ∣x∣ < (π/2)
Provethatsinxxtanxforx<π2
Commented by Abdo msup. last updated on 22/Mar/19
let ∣x∣=t  let prove that sint≤t≤tant for0≤t<(π/2)  let W(x)=t−sint ⇒W^, (t)=1−cost ≥0  t      0                (π/2)  W^′            +  W  0    incr    1       ⇒W(t)≥0 ⇒sint ≤t  let ϕ(t)=tant −t ⇒ϕ^′ (t)=1+tan^2 t−1 =tan^2 t ≥0 ⇒  t         0               (π/2)  ϕ^′                +  ϕ      0                 +∞     ⇒ϕ(t)≥0   ⇒t ≤tant    so the result is proved .
letx∣=tletprovethatsintttantfor0t<π2letW(x)=tsintW,(t)=1cost0t0π2W+W0incr1W(t)0sinttletφ(t)=tanttφ(t)=1+tan2t1=tan2t0t0π2φ+φ0+φ(t)0ttantsotheresultisproved.
Answered by ajfour last updated on 21/Mar/19
let  ∣x∣=x     cos x ≤1 ≤1+tan^2 x    ((d(sin x))/dx)≤ ((d(x))/dx) ≤ ((d(tan x))/dx)  and at x=0 , sin x=x=tan x ;  hence    sin x ≤ x ≤ tan x .
letx∣=xcosx11+tan2xd(sinx)dxd(x)dxd(tanx)dxandatx=0,sinx=x=tanx;hencesinxxtanx.
Answered by mr W last updated on 21/Mar/19
Commented by mr W last updated on 21/Mar/19
OA=1  ∠AOB=x  AB^(⌢) =x  AC=sin x  AD=tan x  AC<AB^(⌢) <AD  ⇒sin x<x<tan x
OA=1AOB=xAB=xAC=sinxAD=tanxAC<AB<ADsinx<x<tanx

Leave a Reply

Your email address will not be published. Required fields are marked *