Menu Close

Prove-that-sinh-1-tan-log-tan-2-pi-4-Mastermind-




Question Number 168187 by Mastermind last updated on 05/Apr/22
Prove that :   sinh^(−1) tanθ = log tan((θ/2)+(π/4))    Mastermind
Provethat:sinh1tanθ=logtan(θ2+π4)Mastermind
Answered by peter frank last updated on 06/Apr/22
sinh^(−1) x=ln (x+(√(x^2 −1)) )  x=tan θ  sinh^(−1) tan θ=ln (tan θ+sec θ)  ln (tan θ+sec θ)=ln (((1+sin θ)/(cos θ)))  ln (((1+sin θ)/(cos θ)))=ln (((cos (θ/2)+sin (θ/2))^2 )/(cos^2  (θ/2)−sin^2 (θ/2)))  =ln (((1+tan (θ/2))/(1−tan (θ/2))))=ln[ tan ((π/4)+(θ/2))]  sinh^(−1) tan θ=lntan [ ((π/4)+(θ/2))]
sinh1x=ln(x+x21)x=tanθsinh1tanθ=ln(tanθ+secθ)ln(tanθ+secθ)=ln(1+sinθcosθ)ln(1+sinθcosθ)=ln(cosθ2+sinθ2)2cos2θ2sin2θ2=ln(1+tanθ21tanθ2)=ln[tan(π4+θ2)]sinh1tanθ=lntan[(π4+θ2)]
Commented by Mastermind last updated on 07/Apr/22
Thanks
Thanks
Answered by Mathspace last updated on 05/Apr/22
argsh(tanθ)=ln(tanθ+(√(1+tan^2 θ)))  =ln(((sinθ)/(cosθ))+(1/(cosθ)))=ln(((1+sinθ)/(cosθ)))  =ln(((1+((2t)/(1+t^2 )))/((1−t^2 )/(1+t^2 ))))=ln(((t^2 +2t+1)/(1−t^2 )))(t=tan((θ/2)))  =ln((((1+t)^2 )/((1−t)(1+t))))=ln(((1+t)/(1−t)))  =ln(((tan((π/4))+tan((θ/2)))/(1−tan((π/4))tan((θ/2)))))  =ln{tan((θ/2)+(π/4))}
argsh(tanθ)=ln(tanθ+1+tan2θ)=ln(sinθcosθ+1cosθ)=ln(1+sinθcosθ)=ln(1+2t1+t21t21+t2)=ln(t2+2t+11t2)(t=tan(θ2))=ln((1+t)2(1t)(1+t))=ln(1+t1t)=ln(tan(π4)+tan(θ2)1tan(π4)tan(θ2))=ln{tan(θ2+π4)}
Commented by Mastermind last updated on 07/Apr/22
  Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *