Prove-that-tan-2A-2tan-A-1-tan-2-A- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 130221 by bramlexs22 last updated on 23/Jan/21 Provethattan2A=2tanA1−tan2A Answered by EDWIN88 last updated on 23/Jan/21 byDe′Moivretheoremcos2A+isin2A=(cosA+isinA)2=(cos2A−sin2A)+i(2sinAcosA)cos2A+isin2Acos2A=cos2A−sin2Acos2A+i2sinAcosAcos2A1+itan2A=1+i2sinAcosAcos2A−sin2A⇔tan2A=(2sinAcosAcos2A)(cos2A−sin2Acos2A)⇔tan2A=2tanA1−tan2A Answered by physicstutes last updated on 23/Jan/21 tan2A=sin2Acos2A=2sinAcosAcos2A−sin2A=2tanA1−tan2A Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: u-2-1-u-2-2-du-Next Next post: lim-x-5-log-2-3-3x-15- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.