Menu Close

Prove-that-tan-2A-2tan-A-1-tan-2-A-




Question Number 130221 by bramlexs22 last updated on 23/Jan/21
Prove that tan 2A=((2tan A)/(1−tan^2 A))
Provethattan2A=2tanA1tan2A
Answered by EDWIN88 last updated on 23/Jan/21
by De′Moivre theorem   cos 2A+i sin 2A = (cos A+i sin A)^2                                      = (cos^2 A−sin^2 A)+i (2sin Acos A)   ((cos 2A+i sin 2A)/(cos 2A)) = ((cos^2 A−sin^2 A)/(cos 2A)) +i (( 2sin Acos A)/(cos 2A))  1+ i tan 2A = 1+ i ((2sin Acos A)/(cos^2 A−sin^2 A))  ⇔ tan 2A = (((((2sin Acos A)/(cos^2 A))))/((((cos^2 A−sin^2 A)/(cos^2 A)))))  ⇔ tan 2A = ((2tan A)/(1−tan^2 A))
byDeMoivretheoremcos2A+isin2A=(cosA+isinA)2=(cos2Asin2A)+i(2sinAcosA)cos2A+isin2Acos2A=cos2Asin2Acos2A+i2sinAcosAcos2A1+itan2A=1+i2sinAcosAcos2Asin2Atan2A=(2sinAcosAcos2A)(cos2Asin2Acos2A)tan2A=2tanA1tan2A
Answered by physicstutes last updated on 23/Jan/21
tan 2A = ((sin 2A)/(cos 2A)) = ((2sin A cos A)/(cos^2 A−sin^2 A)) = ((2tan A)/(1−tan^2 A))
tan2A=sin2Acos2A=2sinAcosAcos2Asin2A=2tanA1tan2A

Leave a Reply

Your email address will not be published. Required fields are marked *