Question Number 43467 by peter frank last updated on 11/Sep/18
$${prove}\:{th}\mathrm{at}\:\mathrm{tan}\theta+\mathrm{2}{tan}\mathrm{2}\theta+\mathrm{4}{tan}\:\:\:\mathrm{4}\theta \\ $$$$+\mathrm{8cot8}\theta={cot}\theta \\ $$
Answered by ajfour last updated on 11/Sep/18
$$\mathrm{8cot}\:\mathrm{8}\theta+\mathrm{4tan}\:\mathrm{4}\theta+\mathrm{2tan}\:\mathrm{2}\theta+\mathrm{tan}\:\theta \\ $$$$\:\:\:\:=\:\frac{\mathrm{8}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{4}\theta\right)}{\mathrm{2tan}\:\mathrm{4}\theta}+\mathrm{4tan}\:\mathrm{4}\theta+… \\ $$$$\:\:\:\:\:=\:\mathrm{4cot}\:\mathrm{4}\theta+\mathrm{2tan}\:\mathrm{2}\theta+\mathrm{tan}\:\theta \\ $$$$\:\:\:\:=\:\frac{\mathrm{4}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}\theta\right)}{\mathrm{2tan}\:\mathrm{2}\theta}+\mathrm{2tan}\:\mathrm{2}\theta+\mathrm{tan}\:\theta \\ $$$$\:\:\:=\:\mathrm{2cot}\:\mathrm{2}\theta+\mathrm{tan}\:\theta \\ $$$$\:\:\:=\:\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \theta\right)}{\mathrm{2tan}\:\theta}+\mathrm{tan}\:\theta\:\:=\:\mathrm{cot}\:\theta\:. \\ $$
Commented by peter frank last updated on 11/Sep/18
$${thanks}\: \\ $$
Commented by peter frank last updated on 11/Sep/18
$$ \\ $$$$\mathrm{sir}\:\mathrm{the}\:\mathrm{third}\:\mathrm{line}\:\mathrm{am}\:\mathrm{not}\:\mathrm{understood} \\ $$$$\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\mathrm{4cot}\:\mathrm{4}\theta \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 11/Sep/18
$$ \\ $$$$\mathrm{sir}\:\mathrm{the}\:\mathrm{third}\:\mathrm{line}\:\mathrm{am}\:\mathrm{not}\:\mathrm{understood} \\ $$$$\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\mathrm{4cot}\:\mathrm{4}\theta \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by ajfour last updated on 11/Sep/18
$$\frac{\mathrm{8}}{\mathrm{2tan}\:\mathrm{4}\theta}\:=\:\mathrm{4cot}\:\mathrm{4}\theta \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Sep/18
$${tan}\theta−{cot}\theta \\ $$$$={tan}\theta−\frac{\mathrm{1}}{{tan}\theta} \\ $$$$=\frac{{tan}^{\mathrm{2}} \theta−\mathrm{1}}{{tan}\theta} \\ $$$$=\frac{−\mathrm{2}\left(\mathrm{1}−{tan}^{\mathrm{2}} \theta\right)}{\mathrm{2}{tan}\theta} \\ $$$$=−\mathrm{2}{cot}\mathrm{2}\theta \\ $$$${so}\:\:{tan}\theta={cot}\theta−\mathrm{2}{cot}\mathrm{2}\theta \\ $$$$\:\:\:\:\:\:\mathrm{2}{tan}\mathrm{2}\theta=\mathrm{2}\left({cot}\mathrm{2}\theta−\mathrm{2}{cot}\mathrm{4}\theta\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{4}{tan}\mathrm{4}\theta=\:\:\mathrm{4}\left({cot}\mathrm{4}\theta−\mathrm{2}{cot}\mathrm{8}\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{8}{cot}\mathrm{8}\theta=\mathrm{8}{cot}\mathrm{8}\theta \\ $$$${now}\:{add}\:{them}\:\:{RHS}\:={cot}\theta\: \\ $$$${new}\:{tricks}…{no}\:{need}\:{to}\:{calculatd}\:{tan}\mathrm{2}\theta,\:\:{tan}\mathrm{4}\theta \\ $$$$\:{cot}\mathrm{8}\theta\:{etc}… \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 11/Sep/18
$${thanks} \\ $$