Menu Close

Prove-that-tan-y-sec-y-1-tan-y-sec-y-1-tan-y-sec-y-




Question Number 191477 by Spillover last updated on 24/Apr/23
Prove that    ((tan y+sec y−1)/(tan y−sec y+1))=tan y+sec y
Provethattany+secy1tanysecy+1=tany+secy
Answered by ARUNG_Brandon_MBU last updated on 24/Apr/23
((tanx+secx−1)/(tanx−secx+1))=((sinx+1−cosx)/(sinx−1+cosx))  =((2sin(x/2)(cos(x/2)+sin(x/2)))/(2sin(x/2)(cos(x/2)−sin(x/2))))×((cos(x/2)+sin(x/2))/(cos(x/2)+sin(x/2)))  =((1+2sin(x/2)cos(x/2))/(cos^2 (x/2)−sin^2 (x/2)))=((sinx+1)/(cosx))=tanx+secx
tanx+secx1tanxsecx+1=sinx+1cosxsinx1+cosx=2sinx2(cosx2+sinx2)2sinx2(cosx2sinx2)×cosx2+sinx2cosx2+sinx2=1+2sinx2cosx2cos2x2sin2x2=sinx+1cosx=tanx+secx

Leave a Reply

Your email address will not be published. Required fields are marked *