Question Number 191477 by Spillover last updated on 24/Apr/23
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$ \\ $$$$\frac{\mathrm{tan}\:\mathrm{y}+\mathrm{sec}\:\mathrm{y}−\mathrm{1}}{\mathrm{tan}\:\mathrm{y}−\mathrm{sec}\:\mathrm{y}+\mathrm{1}}=\mathrm{tan}\:\mathrm{y}+\mathrm{sec}\:\mathrm{y} \\ $$$$ \\ $$
Answered by ARUNG_Brandon_MBU last updated on 24/Apr/23
$$\frac{\mathrm{tan}{x}+\mathrm{sec}{x}−\mathrm{1}}{\mathrm{tan}{x}−\mathrm{sec}{x}+\mathrm{1}}=\frac{\mathrm{sin}{x}+\mathrm{1}−\mathrm{cos}{x}}{\mathrm{sin}{x}−\mathrm{1}+\mathrm{cos}{x}} \\ $$$$=\frac{\mathrm{2sin}\frac{{x}}{\mathrm{2}}\left(\mathrm{cos}\frac{{x}}{\mathrm{2}}+\mathrm{sin}\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2sin}\frac{{x}}{\mathrm{2}}\left(\mathrm{cos}\frac{{x}}{\mathrm{2}}−\mathrm{sin}\frac{{x}}{\mathrm{2}}\right)}×\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}+\mathrm{sin}\frac{{x}}{\mathrm{2}}}{\mathrm{cos}\frac{{x}}{\mathrm{2}}+\mathrm{sin}\frac{{x}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}+\mathrm{2sin}\frac{{x}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}}{\mathrm{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}=\frac{\mathrm{sin}{x}+\mathrm{1}}{\mathrm{cos}{x}}=\mathrm{tan}{x}+\mathrm{sec}{x} \\ $$