Menu Close

Prove-that-tanh-log-3-1-2-




Question Number 51887 by Tawa1 last updated on 31/Dec/18
Prove that;    tanh(log (√3))  =  (1/2)
Provethat;tanh(log3)=12
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jan/19
e^(ix) =cosx+isinx  e^(−ix) =cosx−isinx  x=iθ  e^(−θ) =cos(iθ)+isin(iθ)          =cosh(θ)−sinh(θ)  e^θ =cosh(θ)+sinh(θ)  tanh(θ)=((e^θ −e^(−θ) )/(e^θ +e^(−θ) ))  tanh(ln(√3) )=((e^(ln(√3) ) −e^(−ln(√(3 ))) )/(e^(ln(√3) ) +e^(−ln(√3) ) ))=((e^((1/2)ln3) −e^(−(1/2)ln3) )/(e^((1/2)ln3) +e^(−(1/2)ln3) )) .             =(((3)^(1/2) −(3)^((−1)/2) )/((3)^(1/2) +(3)^((−1)/2) ))=((3^((1/2)+(1/2)) −1)/(3^((1/2)+(1/2)) +1)).=((3−1)/(3+1))=(1/2)  a^x =e^(xlna)
eix=cosx+isinxeix=cosxisinxx=iθeθ=cos(iθ)+isin(iθ)=cosh(θ)sinh(θ)eθ=cosh(θ)+sinh(θ)tanh(θ)=eθeθeθ+eθtanh(ln3)=eln3eln3eln3+eln3=e12ln3e12ln3e12ln3+e12ln3.=(3)12(3)12(3)12+(3)12=312+121312+12+1.=313+1=12ax=exlna
Commented by Tawa1 last updated on 31/Dec/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *