Menu Close

prove-that-tanhx-itanx-




Question Number 43452 by mondodotto@gmail.com last updated on 10/Sep/18
prove that  tanhx=itanx
provethattanhx=itanx
Answered by alex041103 last updated on 10/Sep/18
tanh x = ((e^x −e^(−x) )/(e^x +e^(−x) ))=((e^(i×ix) −e^(−i×ix) )/(e^(i×ix) +e^(−i×ix) ))=  =((cos ix + isin ix − cos ix + isin x)/(cos ix + isin ix + cos ix− isin x))=  =i((2sin ix)/(2cos ix))=itan ix  where e^(iθ) =cos iθ + isin iθ  ⇒tanh x = itan ix
tanhx=exexex+ex=ei×ixei×ixei×ix+ei×ix==cosix+isinixcosix+isinxcosix+isinix+cosixisinx==i2sinix2cosix=itanixwhereeiθ=cosiθ+isiniθtanhx=itanix

Leave a Reply

Your email address will not be published. Required fields are marked *