Menu Close

Prove-that-tanx-2-pi-2x-2-pi-2x-2-3x-2pi-2-3x-2pi-2-5x-2pi-2-5x-2pi-




Question Number 122740 by Dwaipayan Shikari last updated on 19/Nov/20
Prove that  tanx=(2/(π−2x))−(2/(π+2x))+(2/(3x−2π))−(2/(3x+2π))+(2/(5x−2π))−(2/(5x+2π))+....
Provethattanx=2π2x2π+2x+23x2π23x+2π+25x2π25x+2π+.
Commented by Dwaipayan Shikari last updated on 19/Nov/20
sinx  has value 0 at 0,π,−π, 2π,−2π,....  So it can be written as products  sinx=Cx(π−x)(x+π)(2π−x)(x+2π)...  x→0  ((sinx)/(Cx))=(π−x)(x+π)(2π−x)...  ⇒(1/C)=π.π.2π.2π...  So   sinx=x(1−(x/π))(1+(x/π))(1−(x/(2π)))...  ((sinx)/x)=Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))  So in this manner   cosx=(1−((2x)/π))(1+((2x)/π))(1−((2x)/(3π)))(1+((2x)/(3π)))...  log(cosx)=log(1−((2x)/π))+log(1+((2x)/π))+...  −((sinx)/(cosx))=(((−2)/π)/(1−((2x)/π)))+((2/π)/(1+((2x)/π)))−((2/(3π))/(1−((2x)/(3π))))+...  tanx=(2/(π−2x))−(2/(π+2x))+(2/(3π−2x))−(2/(3π+2x))+(2/(5π−2x))−(2/(5π+2x))+...  tanx=(1/((π/2)−x))−(1/((π/2)+x))+(1/(((3π)/2)−x))−(1/(((3π)/2)+x))+(1/(((5π)/2)−x))−(1/(((5π)/2)+x))+...
sinxhasvalue0at0,π,π,2π,2π,.Soitcanbewrittenasproductssinx=Cx(πx)(x+π)(2πx)(x+2π)x0sinxCx=(πx)(x+π)(2πx)1C=π.π.2π.2πSosinx=x(1xπ)(1+xπ)(1x2π)sinxx=n=1(1x2n2π2)Sointhismannercosx=(12xπ)(1+2xπ)(12x3π)(1+2x3π)log(cosx)=log(12xπ)+log(1+2xπ)+sinxcosx=2π12xπ+2π1+2xπ23π12x3π+tanx=2π2x2π+2x+23π2x23π+2x+25π2x25π+2x+tanx=1π2x1π2+x+13π2x13π2+x+15π2x15π2+x+
Commented by Dwaipayan Shikari last updated on 19/Nov/20
I don′t have the justification for this proof. Is this right sir?
Idonthavethejustificationforthisproof.Isthisrightsir?
Commented by mindispower last updated on 19/Nov/20
cos(x)=sin((π/2)−x)  (d/dx)lncos(x)=−tg(x)
cos(x)=sin(π2x)ddxlncos(x)=tg(x)

Leave a Reply

Your email address will not be published. Required fields are marked *