Prove-that-the-area-of-any-quadrilateral-ABCD-is-s-a-s-b-s-c-s-d-abcd-cos-2-A-C-2- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 128178 by bemath last updated on 05/Jan/21 ProvethattheareaofanyquadrilateralABCDis(s−a)(s−b)(s−c)(s−d)−abcdcos2(A+C2). Answered by mr W last updated on 05/Jan/21 Commented by mr W last updated on 05/Jan/21 letareaofABCD=Fs=a+b+c+d2BD2=a2+d2−2adcosA=b2+c2−2bccosCadcosA−bccosC=12(a2+d2−b2−c2)(ad)2cos2A+(bc)2cos2C−2(abcd)cosAcosC=14(a2+d2−b2−c2)2⇒(ad)2cos2A+(bc)2cos2C=14(a2+d2−b2−c2)2+2(abcd)cosAcosCF=12(adsinA+bcsinC)4F2=(ad)2sin2A+(bc)2sin2C+2(abcd)sinAsinC4F2=(ad)2+(bc)2−(ad)2cos2A−(bc)2cos2C+2(abcd)sinAsinC4F2=(ad)2+(bc)2−14(a2+d2−b2−c2)2−2(abcd)cosAcosC+2(abcd)sinAsinC4F2=(ad)2+(bc)2−14(a2+d2−b2−c2)2−2(abcd)cosAcosC+2(abcd)sinAsinC4F2=(ad)2+(bc)2−14(a2+d2−b2−c2)2−2(abcd)cos(A+C)4F2=(ad)2+(bc)2−14(a2+d2−b2−c2)2−2(abcd)(2cos2A+C2−1)4F2=(ad)2+(bc)2−14(a2+d2−b2−c2)2+2(abcd)−4(abcd)cos2A+C24F2=(ad+bc)2−14(a2+d2−b2−c2)2−4(abcd)cos2A+C216F2=(2ad+2bc)2−(a2+d2−b2−c2)2−16(abcd)cos2A+C216F2=(2ad+2bc+a2+d2−b2−c2)(2ad+2bc−a2−d2+b2+c2)−16(abcd)cos2A+C216F2=[(a+d)2−(b−c)2][(b+c)2−(a−d)2]−16(abcd)cos2A+C216F2=(a+d+b−c)(a+d−b+c)(b+c+a−d)(b+c−a+d)−16(abcd)cos2A+C216F2=(a+d+b+c−2c)(a+d+c+b−2b)(b+c+a+d−2d)(b+c+a+d−2a)−16(abcd)cos2A+C216F2=(2s−2c)(2s−2b)(2s−2d)(2s−2a)−16(abcd)cos2A+C216F2=16(s−c)(s−b)(s−d)(s−a)−16(abcd)cos2A+C2F2=(s−a)(s−b)(s−c)(s−d)−(abcd)cos2A+C2⇒F=(s−a)(s−b)(s−c)(s−d)−abcdcos2A+C2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-t-x-ax-4-bx-2-x-5-where-a-and-b-are-constant-If-t-4-3-then-t-4-Next Next post: Question-128181 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.