Menu Close

Prove-that-the-coefficient-of-x-p-in-the-expansion-of-a-0-a-1-x-a-2-x-2-a-3-x-3-a-k-x-k-n-is-n-n-0-n-1-n-2-n-3-n-k-a-0-n-0-a-1-n-1-a-2-n-2-a-3-n-3-a-k-n-k-whe




Question Number 22316 by Tinkutara last updated on 15/Oct/17
Prove that the coefficient of x^p  in the  expansion of (a_0 +a_1 x+a_2 x^2 +a_3 x^3 +...+a_k x^k )^n   is Σ((n!)/(n_0 !n_1 !n_2 !n_3 !...n_k !))a_0 ^n_0  a_1 ^n_1  a_2 ^n_2  a_3 ^n_3  ...a_k ^n_k    where n_0 , n_1 , n_2 , n_3 , ..., n_k  are all non-  negative integers subject to the  conditions n_0 +n_1 +n_2 +n_3 +...+n_k =n  and n_1 +2n_2 +3n_3 +...+kn_k =p.
Provethatthecoefficientofxpintheexpansionof(a0+a1x+a2x2+a3x3++akxk)nisΣn!n0!n1!n2!n3!nk!a0n0a1n1a2n2a3n3aknkwheren0,n1,n2,n3,,nkareallnonnegativeintegerssubjecttotheconditionsn0+n1+n2+n3++nk=nandn1+2n2+3n3++knk=p.

Leave a Reply

Your email address will not be published. Required fields are marked *