Menu Close

Prove-that-the-equation-of-the-circle-passing-through-the-points-of-intersection-of-these-two-curves-y-1-c-x-y-x-2-c-lt-2-3-3-is-x-c-2-2-y-1-2-1-c-2-4-




Question Number 118634 by ajfour last updated on 18/Oct/20
Prove that the equation of the circle  passing through the points of  intersection of these two curves:    y=1+(c/x) ;  y=x^2      (c < (2/(3(√3))) )   is   (x−(c/2))^2 +(y−1)^2 =1+(c^2 /4)  .
$${Prove}\:{that}\:{the}\:{equation}\:{of}\:{the}\:{circle} \\ $$$${passing}\:{through}\:{the}\:{points}\:{of} \\ $$$${intersection}\:{of}\:{these}\:{two}\:{curves}: \\ $$$$\:\:{y}=\mathrm{1}+\frac{{c}}{{x}}\:;\:\:{y}={x}^{\mathrm{2}} \:\:\:\:\:\left({c}\:<\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\right)\: \\ $$$${is}\:\:\:\left({x}−\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1}+\frac{{c}^{\mathrm{2}} }{\mathrm{4}}\:\:. \\ $$
Commented by necxxx last updated on 18/Oct/20
sir Ajfour, you and I know these your  qudstions are for MrW and B.e.h.i ...lol  I really appreciate your questions; they  remind me that there′s more to what we  ever know.
$${sir}\:{Ajfour},\:{you}\:{and}\:{I}\:{know}\:{these}\:{your} \\ $$$${qudstions}\:{are}\:{for}\:{MrW}\:{and}\:{B}.{e}.{h}.{i}\:…{lol} \\ $$$${I}\:{really}\:{appreciate}\:{your}\:{questions};\:{they} \\ $$$${remind}\:{me}\:{that}\:{there}'{s}\:{more}\:{to}\:{what}\:{we} \\ $$$${ever}\:{know}. \\ $$
Commented by ajfour last updated on 18/Oct/20
thanks Sir, this question  i′ ve created myself is really nice.  Anyone including you can attempt it★
$${thanks}\:{Sir},\:{this}\:{question} \\ $$$${i}'\:{ve}\:{created}\:{myself}\:{is}\:{really}\:{nice}. \\ $$$${Anyone}\:{including}\:{you}\:{can}\:{attempt}\:{it}\bigstar \\ $$
Commented by ajfour last updated on 18/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *