Menu Close

Prove-that-the-equation-sin-x-1-x-is-impossible-if-x-be-real-




Question Number 37733 by kunal1234523 last updated on 17/Jun/18
Prove that the equation sin θ = x + (1/x)   is impossible if x be real.
Provethattheequationsinθ=x+1xisimpossibleifxbereal.
Answered by MrW3 last updated on 17/Jun/18
if x>0:  sin θ=x+(1/x)=((√x)−(1/( (√x))))^2 +2≥2  but sin θ≤1 ⇒ no solution    if x<0:  sin θ=x+(1/x)=−((√(−x))−(1/( (√(−x)))))^2 −2≤−2  but sin θ≥−1 ⇒ no solution
ifx>0:sinθ=x+1x=(x1x)2+22butsinθ1nosolutionifx<0:sinθ=x+1x=(x1x)222butsinθ1nosolution
Commented by kunal1234523 last updated on 17/Jun/18
thank you very much MrW3
thankyouverymuchMrW3

Leave a Reply

Your email address will not be published. Required fields are marked *