Menu Close

prove-that-the-equation-Z-n-1-have-exacly-n-roots-given-by-Z-k-e-i-2kpi-n-k-0-n-1-




Question Number 57902 by maxmathsup by imad last updated on 14/Apr/19
prove that the equation Z^n =1  have exacly n roots  given by  Z_k =e^(i((2kπ)/n))     k∈[[0,n−1]]
provethattheequationZn=1haveexaclynrootsgivenbyZk=ei2kπnk[[0,n1]]
Commented by Abdo msup. last updated on 14/Apr/19
let put Z =r e^(iθ)    so Z^n  =1 ⇔r^n  e^(inθ)  =e^(i2kπ)      (k∈Z) ⇒  r^n =1  and nθ =2kπ ⇒r =1 and θ =((2kπ)/n)  so the roots of this equation are Z_k =e^((i2kπ)/n)   k ∈ Z    due to Z_(−k) =Z_k ^−    we can take k≥0  if k≤n−1 there is exacly n roots and k∈[[0,n−1]]  if k>n  let divide k by n ⇒∃(q,r) from N /  k =qn +r and 0≤r≤n−1 ⇒  Z_k =e^(i((2(qn +r)π)/n))  =e^(i2qπ)  e^((i2rπ)/n)  =e^((i2rπ)/n)  =Z_r   so there is exatly nroots  Z_k  given by  Z_k =e^((i2kπ)/n)    and k∈[[0,n−1⌉].
letputZ=reiθsoZn=1rneinθ=ei2kπ(kZ)rn=1andnθ=2kπr=1andθ=2kπnsotherootsofthisequationareZk=ei2kπnkZduetoZk=Zkwecantakek0ifkn1thereisexaclynrootsandk[[0,n1]]ifk>nletdividekbyn(q,r)fromN/k=qn+rand0rn1Zk=ei2(qn+r)πn=ei2qπei2rπn=ei2rπn=ZrsothereisexatlynrootsZkgivenbyZk=ei2kπnandk[[0,n1].
Answered by mr W last updated on 14/Apr/19
let Z=1(cos θ+i sin θ)=e^(θi)   Z^n =cos nθ+i sin nθ=1  ⇒cos nθ=1, sin nθ=0  ⇒nθ=2kπ  ⇒θ=((2kπ)/n) with 0≤(k/n)<1 or 0≤k≤n−1  ⇒Z=e^(i((2kπ)/n))  with 0≤k≤n−1
letZ=1(cosθ+isinθ)=eθiZn=cosnθ+isinnθ=1cosnθ=1,sinnθ=0nθ=2kπθ=2kπnwith0kn<1or0kn1Z=ei2kπnwith0kn1
Commented by mr W last updated on 14/Apr/19
0≤θ<2π  there are exactly n values for θ in  this range, i.e. there are exactly n  roots.
0θ<2πthereareexactlynvaluesforθinthisrange,i.e.thereareexactlynroots.
Commented by maxmathsup by imad last updated on 14/Apr/19
yes sir but  what there is only n roots...
yessirbutwhatthereisonlynroots

Leave a Reply

Your email address will not be published. Required fields are marked *