Menu Close

Prove-that-the-Euler-Constant-is-qlso-equal-to-lim-x-1-x-1-x-x-1-




Question Number 117826 by snipers237 last updated on 13/Oct/20
  Prove that the Euler Constant is qlso equal to  lim_(x→−1)   Γ(x)−(1/(x(x+1)))
ProvethattheEulerConstantisqlsoequaltolimx1Γ(x)1x(x+1)
Answered by mnjuly1970 last updated on 14/Oct/20
solution::   lim_(x→−1)  [Γ(x)−(1/(x(x+1)))]   =lim_(x→−1 )  (((Γ(x+2)−1)/(x(x+1))))   =^(l′hospital) lim_(x→−1 ) (((Γ ′(x+2))/(2x+1)))        =((Γ′(1))/(−1))=−Γ′(1)=−ψ(1)Γ(1)=γ   where::  γ  is Euler−  Masheroni constant           ... m.n.1970...
solution::limx1[Γ(x)1x(x+1)]=limx1(Γ(x+2)1x(x+1))=lhospitallimx1(Γ(x+2)2x+1)=Γ(1)1=Γ(1)=ψ(1)Γ(1)=γwhere::γisEulerMasheroniconstantm.n.1970

Leave a Reply

Your email address will not be published. Required fields are marked *