Menu Close

prove-that-the-function-f-x-1-e-x-2-2x-has-a-root-in-the-open-interval-0-1-recall-that-e-2-7-




Question Number 125815 by Tanuidesire last updated on 14/Dec/20
prove that the function f(x)=(1/(e^x −2))−2x, has a root in the open interval (0,1). recall that e≈2.7
$${prove}\:{that}\:{the}\:{function}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{e}^{{x}} −\mathrm{2}}−\mathrm{2}{x},\:{has}\:{a}\:{root}\:{in}\:{the}\:{open}\:{interval}\:\left(\mathrm{0},\mathrm{1}\right).\:{recall}\:{that}\:{e}\approx\mathrm{2}.\mathrm{7} \\ $$
Answered by physicstutes last updated on 14/Dec/20
f (x) = (1/(e^x −2))−2x  f(0) = (1/(−1))−0 = −1  f(1) = (1/(e−2))−2 ≈−0.6  f(1)×f(0) > 0 hence f(x) does not have roots in that inteva
$${f}\:\left({x}\right)\:=\:\frac{\mathrm{1}}{{e}^{{x}} −\mathrm{2}}−\mathrm{2}{x} \\ $$$${f}\left(\mathrm{0}\right)\:=\:\frac{\mathrm{1}}{−\mathrm{1}}−\mathrm{0}\:=\:−\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{{e}−\mathrm{2}}−\mathrm{2}\:\approx−\mathrm{0}.\mathrm{6} \\ $$$${f}\left(\mathrm{1}\right)×{f}\left(\mathrm{0}\right)\:>\:\mathrm{0}\:\mathrm{hence}\:{f}\left({x}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{that}\:\mathrm{inteva} \\ $$
Commented by Tanuidesire last updated on 14/Dec/20
thanks!
$${thanks}! \\ $$
Commented by mindispower last updated on 14/Dec/20
f(0).f(1)<0 withe contnuity ⇒f(x)=0 hase solution  f(0).f(1)>0 we can say nothing  exempl  f(x)=x+1,f(0).f(1)=2>0 f(x)=0 hase no solution  f(x)=(x−(1/2))^2   f(0)f(1)=(1/(16))>0 f(x)=0 hase solution x=(1/2)
$${f}\left(\mathrm{0}\right).{f}\left(\mathrm{1}\right)<\mathrm{0}\:{withe}\:{contnuity}\:\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{hase}\:{solution} \\ $$$${f}\left(\mathrm{0}\right).{f}\left(\mathrm{1}\right)>\mathrm{0}\:{we}\:{can}\:{say}\:{nothing} \\ $$$${exempl} \\ $$$${f}\left({x}\right)={x}+\mathrm{1},{f}\left(\mathrm{0}\right).{f}\left(\mathrm{1}\right)=\mathrm{2}>\mathrm{0}\:{f}\left({x}\right)=\mathrm{0}\:{hase}\:{no}\:{solution} \\ $$$${f}\left({x}\right)=\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${f}\left(\mathrm{0}\right){f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{16}}>\mathrm{0}\:{f}\left({x}\right)=\mathrm{0}\:{hase}\:{solution}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *