Menu Close

Prove-that-the-internal-bisector-of-an-angle-of-a-triangle-divides-the-opposite-sides-in-the-ratio-of-the-sides-containing-the-angle-




Question Number 26858 by $@ty@m last updated on 30/Dec/17
Prove that the internal bisector of an angle   of a triangle divides the opposite  sides in the ratio of the sides containing  the angle.
Provethattheinternalbisectorofanangleofatriangledividestheoppositesidesintheratioofthesidescontainingtheangle.
Answered by mrW1 last updated on 30/Dec/17
Commented by mrW1 last updated on 30/Dec/17
((BD)/(sin ∠BAD))=((AB)/(sin ∠ADB))  ⇒((BD)/(sin α))=((AB)/(sin β))  ⇒((BD)/(AB))=((sin α)/(sin β))    ((DC)/(sin ∠DAC))=((AC)/(sin ∠ADC))  ⇒((DC)/(sin α))=((AC)/(sin (180−β)))=((AC)/(sin β))  ⇒((DC)/(AC))=((sin α)/(sin β))    ⇒((BD)/(AB))=((DC)/(AC)) or ((BD)/(DC))=((AB)/(AC))
BDsinBAD=ABsinADBBDsinα=ABsinβBDAB=sinαsinβDCsinDAC=ACsinADCDCsinα=ACsin(180β)=ACsinβDCAC=sinαsinβBDAB=DCACorBDDC=ABAC
Commented by $@ty@m last updated on 31/Dec/17
Thanks...
Thanks
Answered by mrW1 last updated on 31/Dec/17
Commented by mrW1 last updated on 31/Dec/17
An other easier way:  ((BD)/(DC))=((BE)/(FC))=((AB)/(AC))
Anothereasierway:BDDC=BEFC=ABAC

Leave a Reply

Your email address will not be published. Required fields are marked *