Menu Close

Prove-that-the-order-of-a-subgroup-S-of-a-finite-group-G-always-divide-the-order-of-group-G-




Question Number 192094 by Mastermind last updated on 08/May/23
Prove that the order of a subgroup  S of a finite group G, always divide  the order of group G.
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{a}\:\mathrm{subgroup} \\ $$$$\mathrm{S}\:\mathrm{of}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{group}\:\mathrm{G},\:\mathrm{always}\:\mathrm{divide} \\ $$$$\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{group}\:\mathrm{G}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *