Menu Close

Prove-that-the-perpendicilar-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-meets-on-the-circle-x-2-y-2-a-2-b-2-




Question Number 51613 by peter frank last updated on 29/Dec/18
Prove that the perpendicilar  tangent to the ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  meets on the  circle x^2 +y^2 =a^2 +b^2 .
Provethattheperpendicilartangenttotheellipsex2a2+y2b2=1meetsonthecirclex2+y2=a2+b2.
Answered by peter frank last updated on 29/Dec/18
y=mx+(√(a^2 m^2 +b^2 ))  y−mx=(√(a^2 m^2 +b^2 ))  (y−mx)^2 =((√(a^2 m^2 +b^2 )) )^2   m^2 (x^2 −a^2 )−2mxy+y^2 −b^2 =0  m_(1 ) +m_2 = ((2mx)/(x^2 −a^2 ))  m_(1 ) m_2 = ((y^2 −b^2 )/(x^2 −a^2 ))  for perpendicular   m_1 m_(2 ) =−1  −1= ((y^2 −b^2 )/(x^2 −a^2 ))  y^2 +x^2 =a^2 +b^2
y=mx+a2m2+b2ymx=a2m2+b2(ymx)2=(a2m2+b2)2m2(x2a2)2mxy+y2b2=0m1+m2=2mxx2a2m1m2=y2b2x2a2forperpendicularm1m2=11=y2b2x2a2y2+x2=a2+b2
Answered by mr W last updated on 29/Dec/18
two perpendicular lines from point  (h,k):  ((y−k)/(x−h))=m ⇒mx−y−mh+k=0  ((y−k)/(x−h))=−(1/m) ⇒x+my−h+mk=0  since they tangent the ellipse,  a^2 m^2 +b^2 (−1)^2 −(−mh+k)^2 =0  ⇒a^2 m^2 +b^2 =m^2 h^2 +k^2 −2mhk   ...(i)    a^2 (1)^2 +b^2 m^2 −(−h+mk)^2 =0  ⇒a^2 +b^2 m^2 =h^2 +m^2 k^2 −2mhk   ...(ii)  (i)+(ii):  ⇒a^2 (m^2 +1)+b^2 (1+m^2 )=h^2 (m^2 +1)+k^2 (1+m^2 )  ⇒a^2 +b^2 =h^2 +k^2   or  ⇒x^2 +y^2 =a^2 +b^2
twoperpendicularlinesfrompoint(h,k):ykxh=mmxymh+k=0ykxh=1mx+myh+mk=0sincetheytangenttheellipse,a2m2+b2(1)2(mh+k)2=0a2m2+b2=m2h2+k22mhk(i)a2(1)2+b2m2(h+mk)2=0a2+b2m2=h2+m2k22mhk(ii)(i)+(ii):a2(m2+1)+b2(1+m2)=h2(m2+1)+k2(1+m2)a2+b2=h2+k2orx2+y2=a2+b2
Commented by peter frank last updated on 29/Dec/18
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *