Question Number 51613 by peter frank last updated on 29/Dec/18
$${Prove}\:{that}\:{the}\:{perpendicilar} \\ $$$${tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:{meets}\:{on}\:{the} \\ $$$${circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} . \\ $$
Answered by peter frank last updated on 29/Dec/18
$${y}={mx}+\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${y}−{mx}=\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\left({y}−{mx}\right)^{\mathrm{2}} =\left(\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} \left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)−\mathrm{2}{mxy}+{y}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${m}_{\mathrm{1}\:} +{m}_{\mathrm{2}} =\:\frac{\mathrm{2}{mx}}{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${m}_{\mathrm{1}\:} {m}_{\mathrm{2}} =\:\frac{{y}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${for}\:{perpendicular}\: \\ $$$${m}_{\mathrm{1}} {m}_{\mathrm{2}\:} =−\mathrm{1} \\ $$$$−\mathrm{1}=\:\frac{{y}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} +{x}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$ \\ $$
Answered by mr W last updated on 29/Dec/18
$${two}\:{perpendicular}\:{lines}\:{from}\:{point} \\ $$$$\left({h},{k}\right): \\ $$$$\frac{{y}−{k}}{{x}−{h}}={m}\:\Rightarrow{mx}−{y}−{mh}+{k}=\mathrm{0} \\ $$$$\frac{{y}−{k}}{{x}−{h}}=−\frac{\mathrm{1}}{{m}}\:\Rightarrow{x}+{my}−{h}+{mk}=\mathrm{0} \\ $$$${since}\:{they}\:{tangent}\:{the}\:{ellipse}, \\ $$$${a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \left(−\mathrm{1}\right)^{\mathrm{2}} −\left(−{mh}+{k}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} ={m}^{\mathrm{2}} {h}^{\mathrm{2}} +{k}^{\mathrm{2}} −\mathrm{2}{mhk}\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${a}^{\mathrm{2}} \left(\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} −\left(−{h}+{mk}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} ={h}^{\mathrm{2}} +{m}^{\mathrm{2}} {k}^{\mathrm{2}} −\mathrm{2}{mhk}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\Rightarrow{a}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)+{b}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)={h}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)+{k}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={h}^{\mathrm{2}} +{k}^{\mathrm{2}} \\ $$$${or} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$
Commented by peter frank last updated on 29/Dec/18
$${thank}\:{you} \\ $$