Question Number 19610 by ajfour last updated on 13/Aug/17

Commented by ajfour last updated on 13/Aug/17

Commented by ajfour last updated on 13/Aug/17
![Let B(0,0) ; A(2b,2c) ; C(2a,0) R^2 =h^2 +k^2 ....(1) =(2a−h)^2 +k^2 ...(2) =(h−2b)^2 +(2c−k)^2 ...(3) from (1) and (2): h=a and from (1) and (3): (a−2b)^2 +(2c−k)^2 =a^2 +k^2 ⇒ 4b^2 −4ab=(2k−2c)(2c) or k=c−((b(a−b))/c) hence R^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2 r^2 =(x_0 −a)^2 +y_0 ^2 ...(i) =(x_0 −b)^2 +(y_0 −c)^2 ....(ii) =(x_0 −a−b)^2 +(y_0 −c)^2 ...(iii) using (ii) and (iii) ⇒ x_0 −a−b=b−x_0 or x_0 =b+(a/2) ; Also using (i) and (ii): r^2 =(b+(a/2)−a)^2 +y_0 ^2 =(b+(a/2)−b)^2 +(y_0 −c)^2 ⇒ c(2y_0 −c)=(a^2 /4)−(b−(a/2))^2 ⇒ c(2y_0 −c)=ab−b^2 ⇒ y_0 =(c/2)+((b(a−b))/(2c)) ⇒ (y_0 −c)^2 =[((b(a−b))/(2c))−(c/2)]^2 using (ii): r^2 =(a^2 /4)+[((ab−b^2 −c^2 )/(2c))]^2 ⇒ 4r^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2 =R^2 ⇒ r=(R/2) .](https://www.tinkutara.com/question/Q19621.png)
Answered by Tinkutara last updated on 13/Aug/17

Commented by ajfour last updated on 13/Aug/17
