Menu Close

Prove-that-the-radius-of-a-circle-passing-through-the-midpoints-of-the-sides-of-a-triangle-ABC-is-half-the-radius-of-a-circle-circum-scribed-about-the-triangle-




Question Number 19610 by ajfour last updated on 13/Aug/17
Prove that the radius of a circle  passing through the midpoints  of the sides of a triangle ABC is  half the radius of a circle circum-  scribed about the triangle.
ProvethattheradiusofacirclepassingthroughthemidpointsofthesidesofatriangleABCishalftheradiusofacirclecircumscribedaboutthetriangle.
Commented by ajfour last updated on 13/Aug/17
Commented by ajfour last updated on 13/Aug/17
Let B(0,0)  ;  A(2b,2c) ;  C(2a,0)  R^2 =h^2 +k^2                         ....(1)        =(2a−h)^2 +k^2             ...(2)        =(h−2b)^2 +(2c−k)^2   ...(3)  from (1) and (2):       h=a  and  from  (1) and (3):     (a−2b)^2 +(2c−k)^2 =a^2 +k^2   ⇒    4b^2 −4ab=(2k−2c)(2c)  or    k=c−((b(a−b))/c)  hence  R^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2     r^2 =(x_0 −a)^2 +y_0 ^2           ...(i)        =(x_0 −b)^2 +(y_0 −c)^2      ....(ii)        =(x_0 −a−b)^2 +(y_0 −c)^2   ...(iii)  using (ii) and (iii)  ⇒   x_0 −a−b=b−x_0   or   x_0 =b+(a/2) ;  Also  using (i) and (ii):     r^2 =(b+(a/2)−a)^2 +y_0 ^2 =(b+(a/2)−b)^2 +(y_0 −c)^2   ⇒  c(2y_0 −c)=(a^2 /4)−(b−(a/2))^2   ⇒  c(2y_0 −c)=ab−b^2   ⇒  y_0 =(c/2)+((b(a−b))/(2c))  ⇒  (y_0 −c)^2 =[((b(a−b))/(2c))−(c/2)]^2   using (ii):  r^2 =(a^2 /4)+[((ab−b^2 −c^2 )/(2c))]^2   ⇒  4r^2 =a^2 +[((b^2 +c^2 −ab)/c)]^2 =R^2    ⇒      r=(R/2) .
LetB(0,0);A(2b,2c);C(2a,0)R2=h2+k2.(1)=(2ah)2+k2(2)=(h2b)2+(2ck)2(3)from(1)and(2):h=aandfrom(1)and(3):(a2b)2+(2ck)2=a2+k24b24ab=(2k2c)(2c)ork=cb(ab)chenceR2=a2+[b2+c2abc]2r2=(x0a)2+y02(i)=(x0b)2+(y0c)2.(ii)=(x0ab)2+(y0c)2(iii)using(ii)and(iii)x0ab=bx0orx0=b+a2;Alsousing(i)and(ii):r2=(b+a2a)2+y02=(b+a2b)2+(y0c)2c(2y0c)=a24(ba2)2c(2y0c)=abb2y0=c2+b(ab)2c(y0c)2=[b(ab)2cc2]2using(ii):r2=a24+[abb2c22c]24r2=a2+[b2+c2abc]2=R2r=R2.
Answered by Tinkutara last updated on 13/Aug/17
Let circumradius of original triangle is  R = ((a_1 b_1 c_1 )/(4Δ_1 ))  New sides are (a_1 /2), (b_1 /2) and (c_1 /2) and Δ_2   = (Δ_1 /4)  So R′ = (((a_1 b_1 c_1 )/8)/(4(Δ_1 /4))) = (1/2)(((a_1 b_1 c_1 )/(4Δ_1 ))) = (R/2)
LetcircumradiusoforiginaltriangleisR=a1b1c14Δ1Newsidesarea12,b12andc12andΔ2=Δ14SoR=a1b1c184Δ14=12(a1b1c14Δ1)=R2
Commented by ajfour last updated on 13/Aug/17
Excellent!
Excellent!

Leave a Reply

Your email address will not be published. Required fields are marked *