Menu Close

Prove-that-the-sequence-a-n-is-null-when-a-n-is-given-by-n-3-2n-2-1-n-4-n-2-2-Help-




Question Number 192737 by Mastermind last updated on 25/May/23
Prove that the sequence {a_n } is null  when {a_n } is given by ((n^3 +2n^2 −1)/(n^4 −n^2 +2))    Help!
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{is}\:\mathrm{null} \\ $$$$\mathrm{when}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{n}^{\mathrm{3}} +\mathrm{2n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{n}^{\mathrm{4}} −\mathrm{n}^{\mathrm{2}} +\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Answered by Rajpurohith last updated on 26/May/23
clearly, ∣a_n ∣=∣((n^3 +2n^2 −1)/(n^4 −n^2 +2)) ∣<∣ ((n^3 +2n^2 )/(n^4 −n^2 ))∣=∣((n+2)/(n^2 −1)) ∣→0  hence a_(n ) →0
$${clearly},\:\mid{a}_{{n}} \mid=\mid\frac{{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} −\mathrm{1}}{{n}^{\mathrm{4}} −{n}^{\mathrm{2}} +\mathrm{2}}\:\mid<\mid\:\frac{{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} −{n}^{\mathrm{2}} }\mid=\mid\frac{{n}+\mathrm{2}}{{n}^{\mathrm{2}} −\mathrm{1}}\:\mid\rightarrow\mathrm{0} \\ $$$${hence}\:{a}_{{n}\:} \rightarrow\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *