Menu Close

prove-that-the-sum-2-2-2-2-3-2-4-2-2019-2-2020-is-divisible-by-30-




Question Number 154401 by mathdanisur last updated on 18/Sep/21
prove that the sum  2+2^2 +2^3 +2^4 +...+2^(2019) +2^(2020)   is divisible  by  30
provethatthesum2+22+23+24++22019+22020isdivisibleby30
Answered by talminator2856791 last updated on 18/Sep/21
    2^(k+1) +2^(k+3)  = 2^k (8+2)                          = 10∙2^k       2^(k+2) +2^(k+4)  = 2^k (16+4)                          = 20∙2^k       2^(k+1) +2^(k+2) +2^(k+3) +2^(k+4)  = 30∙2^k       S = 2+2^2 +2^3 +2^4 +.....+2^(2019) +2^(2020)    = (2+2^2 +2^3 +2^4 )+(2^5 +2^6 +2^7 +2^8 )+.....   +(2^(2017) +2^(2018) +2^(2019) +2^(2020) )   = (2+2^2 +2^3 +2^4 )+2^4 (2+2^2 +2^3 +2^4 )+.....   +2^(2016) (2+2^2 +2^3 +2^4 )   = 30+2^4 ∙30+2^8 ∙30+.....+2^(2016) ∙30   = 30(1+2^4 +.....+2^(2016) )      ⇒ 30∣S
2k+1+2k+3=2k(8+2)=102k2k+2+2k+4=2k(16+4)=202k2k+1+2k+2+2k+3+2k+4=302kS=2+22+23+24+..+22019+22020=(2+22+23+24)+(25+26+27+28)+..+(22017+22018+22019+22020)=(2+22+23+24)+24(2+22+23+24)+..+22016(2+22+23+24)=30+2430+2830+..+2201630=30(1+24+..+22016)30S
Commented by mathdanisur last updated on 18/Sep/21
Very nice Ser thanks
VeryniceSerthanks
Answered by Rasheed.Sindhi last updated on 18/Sep/21
                            MOD 30  2^4 ≡16                                 ⇒2^(4×1) ≡16  (2^4 )^2 ≡(16)^2 ⇒2^8 ≡16  ⇒2^(4×2) ≡16  (2^8 )^2 ≡(16)^2 ⇒2^(12) ≡16⇒2^(4×3) ≡16  …   …   …   …   …                                               2^(4×k) ≡16  2^(4k) .2≡16.2≡2⇒2^(4k+1) ≡2  2^(4k+1) .2≡2.2≡4⇒  2^(4k+2) ≡4  2^(4k+2) .2≡4.2≡8⇒  2^(4k+3) ≡8  2^(4k) ≡16                  ⇒  2^(4k)  ≡ 16  ▶S=2+2^2 +2^3 +2^4 +...+2^(2019) +2^(2020)   =Σ_(k=0) ^(505) (2^(4k+1) +2^(4k+2) +2^(4k+3) +2^(4k) )  ≡Σ_(k=1) ^(505) (2+4+8+16).k=Σ_(k=1) ^(505) (30k)  S=30×Σ_(k=1) ^(505) k  ∴ 30∣S
MOD30241624×116(24)2(16)2281624×216(28)2(16)22121624×31624×k1624k.216.2224k+1224k+1.22.2424k+2424k+2.24.2824k+3824k1624k16S=2+22+23+24++22019+22020=Σ505k=0(24k+1+24k+2+24k+3+24k)Σ505k=1(2+4+8+16).k=Σ505k=1(30k)S=30×Σ505k=1k30S
Commented by mathdanisur last updated on 18/Sep/21
Very nice Ser thankyou
VeryniceSerthankyou
Answered by JDamian last updated on 18/Sep/21
S=2((2^(2020) −1)/(2−1))=2(2^(2020) −1)  S=2^(2021) −2  S mod 30 =(2^(2021) −2) mod 30=  =2^(2021) mod 30 −2    ∣(2^5 )^k mod 30 =(30+2)^k  mod 30=  =2^k  mod 30  ∣    2^(2021) mod 30 =[2∙(2^5 )^(404) ]mod 30=  =(2∙2^(404) )mod 30=2^(405) mod 30=  =(2^5 )^(81) mod 30=2^(81) mod 30=  =2∙(2^5 )^(16) mod 30 =2^(17)  mod 30=  =2^2 (2^5 )^3 mod 30 = 2^5  mod 30 = 2    S mod 30 = 2 − 2 = 0
S=222020121=2(220201)S=220212Smod30=(220212)mod30==22021mod302(25)kmod30=(30+2)kmod30==2kmod3022021mod30=[2(25)404]mod30==(22404)mod30=2405mod30==(25)81mod30=281mod30==2(25)16mod30=217mod30==22(25)3mod30=25mod30=2Smod30=22=0
Commented by mathdanisur last updated on 18/Sep/21
Very nice Ser thankyou
VeryniceSerthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *